Высота основания правильной треугольной пирамиды равна 5 см, а двугранный угол при стороне основания равен 45 градусов. найти расстояние от вершины основания до противоположной боковой грани.
Если единственный известный угол равен 90°, а в условиях приведены длины двух сторон треугольника (b и c), определите, которая из них является гипотенузой - это должна быть сторона больших размеров. Затем воспользуйтесь теоремой Пифагора и рассчитайте длину неизвестного катета (a) извлечением квадратного корня из разности квадратов длин большей и меньшей сторон: a = √(c²-b²). Впрочем, можно не выяснять, которая из сторон является гипотенузой, а для извлечения корня использовать модуль разности квадратов их длин.
Зная длину гипотенузы (c) и величину угла (α), лежащего напротив нужного катета (a), используйте в расчетах определение тригонометрической функции синус через острые углы прямоугольного треугольника. Этого определение утверждает, что синус известного из условий угла равен соотношению между длинами противолежащего катета и гипотенузы, а значит, для вычисления искомой величины умножайте этот синус на длину гипотенузы: a = sin(α)*с.
Если кроме длины гипотенузы (с) дана величина угла (β), прилежащего к искомому катету (a), используйте определение другой функии - косинуса. Оно звучит точно так же, а значит, перед вычислением просто замените обозначения функции и угла в формуле из предыдущего шага: a = cos(β)*с.4Функция котангенс с вычислением длины катета (a), если в условиях предыдущего шага гипотенуза заменена вторым катетом (b). По определению величина этой тригонометрической функции равна соотношению длин катетов, поэтому умножьте котангенс известного угла на длину известной стороны: a = ctg(β)*b.5Тангенс используйте для вычисления длины катета (a), если в условиях есть величина угла (α), лежащего в противоположной вершине треугольника, и длина второго катета (b). Согласно определению тангенс известного из условий угла - это отношение длины искомой стороны к длине известногокатета, поэтому перемножьте величину этой тригонометрической функции от заданного угла на длину известной стороны: a = tg(α)*b.
Чтобы ответить на вопрос задачи, нужно найти длину основания сечения и его высоту. По условию сечение -квадрат, значит, достаточно найти длину одной стороны - хорды ВС, лежащей в плоскости основания цилиндра. Она удалена от оси на 8 см. Т.к. расстояние от точки (О) до прямой ( хорда ВС) измеряется перпендикуляром, проведем ОН. Перпендикуляр к хорде из центра окружности делит ее пополам. ВН=НС Треугольник ВОН - прямоугольный с гипотенузой=r=10, и катетом ОН=8. Этот треугольник "египетский, второй катет ВС равен 6 ( можно проверить по т.Пифагора) Тогда ВС=2*6=12 см АВ=ВС=12 см ⇒ Ѕ АВСД=12²=144 см²
АН - медиана!
проведём ВД и СК - медианы! они пересекаются в одной точке О и в нее же падает высота!
рассмотрим прямоугольный треугольник SOH! угол SHO =45 по условию! SO - катет=5! SH - гипотинуза и она же является апофемой!
SH=SO/sin45=5/sqrt2/2=10/sqrt2=10sqrt2/2=5sqrt2
угол равен 45, то треугольник равнобедренный и ОН=5!
медианы точкой пересеения делятся в отношение 2 к 1! на ОН приходится только 1 часть, значит, вся меиана равна 15!
рассмотрим прямоугольный треугольник АВН! АН=15, угол ВАН=30 угол АВН =60
АВ=АН/sin60=15/sqrt3/2=30/sqrt3=30sqrt3/3=10sqrt3
Po=30sqrt3
Sb= 30sqrt3*5sqrt2/2=75sqrt6
So=10sqrt3*15/2=5sqrt3*15=75sqrt3
Sp=So+Sb=75sqrt6+75sqrt3