Ну вообще-то по определению фигуры равны , если они совпадают при наложении. Если треугольники равны, то и все их соответствующие элементы при наложении совпадают. Но раз уж от Вас требуют еще какого-то доказательства, то можно и так: Пусть есть тр-ки АВС и А1 В1 С1 равны. Покажем, например, что биссектриса АН = биссектрисе А1 Н1. Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам). Так же и про остальные биссектрисы.
Центры окружностей касательных прямой m в точках А и В лежат на перпендикулярах к этой прямой проведенных в этих точках. Проведем окружности касающиеся друг друга в точке С и прямой в точках А и В. Центры этих окружностей лежат на пересечении перпендикуляров от А и В и серединных перпендикуляров АС и ВС. Проведем касательную прямую СО. Она пересекает прямую АВ в точке О. По свойству касательных, проведенных из одной точки ОА=ОС и ОС=ОВ. Значит ОА=ОВ и точка О середина АВ. ОС медиана треугольника АВС. Если медиана равна половине стороны к которой проведена, то угол этого треугольника прямой и треугольник - прямоугольный с гипотенузой равной диаметру окружности описанной вокруг него. Следовательно: множество искомых точек - вершины прямоугольных с общей треугольников гипотенузой АВ описанных окружностью с диаметром АВ.
πR²=4π
R²=4π:π
R²=4
R=2
C=2πR - формула для вычисления длины окружности
С=2π•2=4π
ответ: 4π.