Задача№1. т.к. тангенс угла - это отношение противолежащей стороны треугольника к прилежащей, то тангенс 45 градусов будет равен отношению стороны XT к TM ( нам надо найти для начала сторону мт - обозначим её за x): tg45 = 20/x Поскольку тангенс 45 градусов равен единице , то x, то есть, сторона мт, равна 20. (20:1) Зная величину сторон мт и хт найдем гипотенузу мх по теореме Пифагора : мх ^2 = 20^2+20^2. мх = корень квадратный из (400+400)= корень квадратный из 800. Всё Задача №3. Так как ВК является высотой, то она образует прямоугольный треугольник со сторонами ак и ав, и со сторонами кд и вд. Найдем по теореме Пифагора сторону кд: корень кв. из(10^2 - 8^2) = 6. Сложим кд и ак : 6+15 = 21 - это и есть первая сторона параллелограмма АД. Найдем вторую сторону пар-ма АВ по т.Пифагора : корень кв. из(8^2+15^2)=17. Всё А насчет задачи №2 : катеты там будут 20 и 48. Если египетский треугольник у нас 5, 12 и 13, то разделив 52 на 13 получим 4 . Умножив 4 на 5 и на 12 получим 20 и 48.
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
АВ/sin90=AC/sinB,откуда sinB=0,5 значит Угол В =30°