В равнобедренной трапеции диагонали равны и точкой пересечения делятся попарно на равные отрезки. То есть ВО=СО; МО=АО.
Тогда ∆ВОС и ∆АОМ – равнобедренные с основаниями ВС и АМ соответственно.
Следовательно угол ВСО=угол СВО=45° и угол МАО=угол АМО=45°.
Сумма углов в любом треугольнике равна 180°
Тогда угол ВОС=180°–угол ВСО–угол СВО=180°–45°–45°=90°;
Угол АОМ=180°–угол МАО–угол АМО=180°–45°–45°=90°.
Следовательно треугольники ВОС и АОМ – прямоугольные с прямыми углами ВОС и АОМ соответственно.
В прямоугольном треугольнике ВОС по теореме Пифагора:
ВС²=ВО²+СО²
Пусть ВО=СО=х
3²=х²+х²
2х²=9
х²=4,5
х=√4,5
Тоесть СО=√4,5 см
В прямоугольном ∆АОМ по теореме Пифагора:
АМ²=АО²+МО²
Пусть АО=МО=у
6²=у²+у²
2у²=36
у=√18
Тоесть МО=√18 см
Угол СОМ=180°–угол АОМ=180°–90° (так как углы смежные)
Тогда ∆СОМ – прямоугольный с прямым углом СОМ.
Тогда в прямоугольном треугольнике СОМ по теореме Пифагора:
СМ²=СО²+МО²
СМ²=4,5+18
СМ=√22,5
Проведём высоты СР и ВН к стороне АМ.
Высоты трапеции, проведенные из концов одного основания, к другому, паралельны и равны.
Углы образованные высотой и стороной, к которой проведена высота, прямые;
Тогда ВСРН – прямоугольник, следовательно НР=ВС=3.
Получим два прямоугольных треугольника СРМ и ВНА.
СР=ВН так как высоты трапеции равны, АВ=СМ как боковые стороны равнобедренной трапеции
Значит треугольники СРМ и ВНА равны как прямоугольные по гипотенузе и катету.
Следовательно РМ=АН как соответственные катеты.
Тогда РМ+АН=2РМ.
АМ=АН+НР+РМ
АМ=НР+2РМ
6=3+2РМ
РМ=1,5
В прямоугольном треугольнике СРМ по теореме Пифагора:
СМ²=СР²+РМ²
СР²=СМ²–РМ²
СР²=22,5–2,25
СР²=20,25
СР=4,5
ответ: 4,5 см
ответ:
объяснение:
1. δавс равнобедренный, значит углы при основании ас равны.∠сва = ∠сав = (180° - 30°)/2 = 75°2. δabd - равнобедренный, значит углы при основании ad равны. ∠bad = ∠bda = 70°.∠сва - внешний, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠bad + ∠bda = 140°.3. δbmn равнобедренный, значит углы при основании nm равны.∠bmn = ∠bnm = 75°.∠mbn = 180° - (75° + 75°) = 30°∠cba = ∠mbn = 30° как вертикальные.4. δabd равнобедренный, вм медиана, проведенная к основанию ad, а значит и высота.∠вма = 90°.∠сва - внешний для треугольника мва, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вам + ∠вма = 45° + 90° = 135°5. δdbc равнобедренный, значит углы при основании сd равны. ∠bdс = ∠bсd = 40°. ∠cdb = 180° - (40° + 40°) = 100°ва - медиана равнобедренного треугольника, значит и биссектриса.∠сва = ∠cbd/2 = 100°/2 = 50°6. ск - медиана равнобедренного треугольника cbd, проведенная к основанию bd, а значит и высота. ∠скв = 90°∠сва - внешний для треугольника скв, значит равен сумме двух внутренних, не смежных с ним.∠сва = ∠вкс + ∠вск = 30° + 90° = 120°7. ва - медиана равнобедренного треугольника асd, проведенная к основанию сd, а значит и высота. ∠сва = 90°8. δеbd - равнобедренный, значит углы при основании еd равны. ∠bеd = ∠bdе = 70°.∠еbd = 180° - (70° + 70°) = 40°∠сва = ∠еbd = 40° как вертикальные.