М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Polinka0898
Polinka0898
27.12.2021 05:52 •  Геометрия

Найдите радиус окружности, вписанной в ромб abcd, у которого диагональ ac равна 10, а диагональ bd равна 24

👇
Ответ:
MashaKun
MashaKun
27.12.2021
О - точка пересечения диагоналей.
Рассмотрим треугольник АВО
Он прямоугольные, его катеты равны половине диагоналей.
АВ - гипотенуза. Её длина по Пифагору
АВ² = (10/2)² + (24/2)²
АВ² = 5² + 12²
АВ² = 25 + 144
АВ² = 169
АВ = 13
Площадь треугольника АВО через катеты
S = 1/2*5*12 = 5*6 = 30
ОН - высота треугольника АВО, она же радиус вписанной окружности
Площадь треугольника через гипоетнузу и высоту
S = 1/2*AB*ОН = 1/2*13*ОН = 30
1/2*13*ОН = 30
ОН = 60/13
Это ответ :)
4,5(38 оценок)
Открыть все ответы
Ответ:
alenkaabramovic
alenkaabramovic
27.12.2021
Если воспользоваться готовой формулой для радиуса вписанной в правильный тетраэдр сферы - то всё попроще. но попробуем обойтись без этой формулы.
на первом рисунке изображён тетраэдр и сечение вписанной сферы плоскостью СРТ
Низ красный, верх синий
Примем сторону тетраэдра за 1. тогда в треугольнике АКР
АР = 1/2
∠РАК = 30°
КР/АР = tg(30) = 1/√3
КР = 1/(2√3)
КР/АК = sin(30°)
АК = 2*КР = 1/√3
И так как К - точка пересечения медиан основания, то
СК = АК = 1/√3
Переходим к ΔАРТ
РТ²+АР² = АТ²
РТ² + 1/4 = 1
РТ² = 3/4
РТ = √3/2
Переходим к ΔКРТ
КТ²+1/(2√3)² = (√3/2)²
КТ²+1/(4*3) = 3/4
КТ² = 3/4-1/12 = 9/12-1/12 = 8/12 = 2/3
КТ = √(2/3) - это высота пирамиды
Пора искать радиус вписанной сферы
ΔКРТ и ΔХОТ подобны - общий угол Т, по прямому углу и третий угол равен в силу того, что два равны и сумма углов треугольника 180°
ОХ = ОК = r
КР/ОХ = РТ/ОТ
1/(2√3)/r = √3/2/(√(2/3)-r)
(√(2/3)-r)/(2√3) = √3/2*r
√(2/3)-r = 2√3√3/2*r
√(2/3)-r = 3r
√(2/3) = 4r
r = 1/(2√2√3) = 1/(2√6)
Хорошо :)
В правильный тетраэдр с единичным ребром можно вписать сферу радиуса 1/(2√6)
Если радиус сферы R, то ребро тетраэдра будет a = 1/(1/(2√6)) = 2√6
площадь одной грани
S₁ = 1/2*a²*sin(60°) = 2*6*√3/2 = 6√3
И полна плошадь тетраэдра в 4 раза больше
S = 24√3

Около шара радиуса r описан правильный тетраэдр. найдите площадь поверхности тетраэдра. с рисунком,
Около шара радиуса r описан правильный тетраэдр. найдите площадь поверхности тетраэдра. с рисунком,
4,6(28 оценок)
Ответ:
bobrikov01
bobrikov01
27.12.2021

Высоты тупоугольного треугольника, проведенные из вершин острых углов, пересекают прямые, содержащие их стороны, вне треугольника. 

Рассмотрим прямоугольные ∆ АСА1 и ∆ ВСВ1.

Острые углы при С у них равны как вертикальные. 

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.  ⇒

                       ∆ АСА1 ~ ∆ ВСВ1

Тогда синусы их равных углов равны, т.е. отношение  сходственных катетов к гипотенузам, равно.  СА1/ АС=СВ1/ВС

III признак подобия треугольников.

Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Доказано. 


Втреугольнике abc с тупым углом acb проведены высоты aa1 и bb1. докажите что треугольники a1cb1 и bc
4,6(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ