М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Frapado
Frapado
13.01.2023 21:48 •  Геометрия

Упереправа паром который может перевозить не более 3 пассажиров. однажды на нём через реку с левого берега на правый решили переправиться коза и 4 козлёнка: 3 чёрных и 1 белый. шустрые козлята сами перепрыгивают на паром к козе но не более 2. по этому заранее не известно какого они будут цвета. расскажи как им побыстрее переправиться на другой берег если коза которая сама перевозит своих козлят решила оставлять на другом берегу или 1 козлёнка или 2 козлят но только 1 цвета.

👇
Ответ:
18фо
18фо
13.01.2023
Коза не может оставить на берегу белого козлёнка, так как с ним обязательно окажется чёрный, поэтому коза возьмёт белого и чёрного козлёнка. Потом она высадит чёрного, а с белым поедет обратно, высадит белого, возьмёт двух чёрных и повезёт на другой берег, высадит одного, со вторым поедет обратно, возьмёт белого и с чёрным и белым поедет к оставшимся двум козлятам
4,5(66 оценок)
Открыть все ответы
Ответ:
lanv
lanv
13.01.2023

По признаку  параллельности прямых, если внутренние накрест лежащие углы  при прямых а и b и секущей с равны, то эти прямые параллельны. Значит, прямые а и b параллельны. Это раз.

Второе. Из условия параллельности прямых а и в вытекает равенство углов 3 и 5, которые тоже будут внутренними накрест лежащими уже при параллельных а и b и секущей с, и уже по свойству параллельных  прямых a и b и секущей с следует ∠3=∠5

2)∠2=∠6, ∠1=∠5; ∠4=∠8; ∠3=∠7- указаны пары соответственных углов при параллельных а и b  и секущей с. Поэтому по свойству соответственных углов данные углы равны.

3) ∠4+∠5=180°; ∠3+∠6=180°, это сумма внутренних односторонних при параллельных а и b  и секущей с. Сумма их равна 180° по свойству внутр. односторонних.

Подводим итог. Сначала доказали параллельность прямых а и b  при секущей с по признаку параллельности прямых, а затем для решения 1),2),3) воспользовались свойствами указанных углов при параллельных прямых а и b  и секущей с.

4,7(30 оценок)
Ответ:
sonyaunicorn1
sonyaunicorn1
13.01.2023

B2. Дан ΔABC, точка M — середина стороны AB, точка N — середина стороны BC, S_{AMNC} = 60. Найти S_{ABC}.

MN || AB, MN = \frac{1}{2}AB ⇒ ∠BMN = ∠BAC ⇒ ΔBMN подобный ΔBAC.

\frac{S_{BMN}}{S_{BAC}} =k^2\\\frac{S_{BMN}}{S_{BAC}} = \frac{MN}{AC} = (\frac{1}{2} )^2 = \frac{1}{4}

S_{AMNC}=S_{ABC}-S_{AMN} = 1-\frac{1}{4} =\frac{3}{4}\cdot S_{ABC}\\S_{ABC} = \frac{4}{3} \cdot S_{AMNC}\\ \\S_{ABC} =\frac{4}{3}\cdot 60 = 4\cdot 20 = 80

ответ: S_{ABC} = 80 ед. кв.

B3. AK — биссектриса ΔABC, АВ = 4, ВК = 2, КС = 3. Найти периметр ΔABC.

Биссектриса угла делит противоположную сторону на отрезки, пропорциональные прилегающим сторонам:

\frac{BK}{AB}=\frac{CK}{AC} \\\\\\frac{2}{4} = \frac{3}{AC} = AC = \frac{3\cdot 4}{2} =6

P = AB+AC+(BK+CK)

P = 4+6+(2+3) = 15

ответ: Периметр ΔАВС равен 15.

B4. Площадь прямоугольного ΔABC равна 360 см², АС:ВС = 3:4. Из середины гипотенузы восстановлен перпендикуляр КМ. Найти площадь ΔMKC.

BK = CK = \frac{1}{2}BC

∠ABC = ∠KMC ⇒ ΔCKM и ΔCAB подобны по двум углам и пропорциональной стороне.

k = \frac{KC}{AC}=\frac{2}{3}

\frac{S_{\triangle CKM}}{S_{\triangle CAB}}=k^2 = \left(\frac{2}{3} \right)^2 = \frac{4}{9} =\\\\S_{\triangle CKM}= \frac{4\cdot S_{\triangle CAB}}{9} = \frac{4\cdot 360}{9} = 4\cdot 40 = 160

ответ: S_{MKC} = 160 см².

4,6(89 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ