Если достроить высоту конуса и его образующую до треугольника (третья сторона - отрезок между основанием высоты и основанием образующей, то есть радиус основания), то он будет прямоугольным. Образующая будет гипотенузой. Раз высота ровно в 2 раза меньше образующей (т.е. гипотенузы), то острый угол этого прямоугольного треугольника при вершине равен 60 градусов. другой катет (радиус основания) будет равен sin(60°) умножить на образующую (её длина 2H): R = sin(60°)*2H = √3/2 * 2H= √3H Площадь круга в основании конуса: S = π*R^2 = π * (√3H)² = 3*π*H² Объём конуса равен трети произведения площади основания на высоту: V = 1/3 * S * H = 1/3 * 3*π*H² * H = π*H³
Стона тр-ка равна а=Р/3=24/3=8см. Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см. Пусть сторона пятиугольника равна х. Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника. Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36° sin36=(х/2)/R, x=2Rsin36=(16sin36·√3)/3≈5.43см.
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов. 2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС. cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС. 3. Площадь треугольника равна половине площади прямоугольника. S=(АС*ВД)/2
R = sin(60°)*2H = √3/2 * 2H= √3H
Площадь круга в основании конуса:
S = π*R^2 = π * (√3H)² = 3*π*H²
Объём конуса равен трети произведения площади основания на высоту:
V = 1/3 * S * H = 1/3 * 3*π*H² * H = π*H³