Примем длины рёбер за 1. Ромб с острым углом 60 градусов имеет меньшую диагональ, равную стороне. Половина такого ромба - равносторонний треугольник. Опустим из точек В и Д перпендикуляры на боковое ребро. Они пересекутся в точке К. Треугольник ВКД - равнобедренный. В основании - диагональ ВД = 1. КВ = КД = 1*cos 30° = √3/2. Искомый угол ВКД равен : ∠BKD = 2arcsin((1/2)/(√3/2) = 2arcsin( 1/√3) = 2arcsin(√3/3) = 70,52878°.
NM║CB ⇒ ∠SNM = ∠SCB; ∠SMN = ∠SBC как соответственные углы ⇒ ΔSCB ~ ΔSNM по двум равным углам ⇒ ⇒ Т.к. фигура в сечении пирамиды плоскостью, параллельной основанию, подобна основанию, то ΔABC ~ ΔKMN с коэффициентом подобия k = Площади подобных фигур относятся как коэффициент подобия в квадрате
=2n*R^2 + 2n*R*(R+10) = 144n
R^2 + R*(R+10) = 72
R^2 + 5R - 36 = 0
R = 4