М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dalakoff
dalakoff
10.11.2021 11:57 •  Геометрия

Вусеченный конус вписан шар, объем которого составляет 6/13 объема конуса. найдите угол между образующей конуса и плоскостью его основания

👇
Ответ:
Kracylia
Kracylia
10.11.2021
Объём шара V= \frac{4}{3} R^3 \pi .
Объём усечённого конуса V= \frac{1}{3} \pi h(r_1^2+r_2^2+r_1*r_2).
Обозначим угол между образующей конуса и плоскостью его основания α.
Проведём осевое сечение и получим равнобедренную трапецию с вписанной в неё окружностью.
В этом случае r1 = R*tg(α/2).  r2 = R/(tg(α/2)), r1*r2 = R².
Запишем заданное отношение объёмов:
((4/3)R³π)/((1/3)π*(2R)*(R*tg(α/2))+(R/tg(α/2))+R²) = 6/13.
Приводим к общему знаменателю:
13R²(tg²(α/2)) = 3R²(tg⁴(α/2)) + 3R² + 3R²(tg²(α/2)).
Сокращаем на R² и делаем замену tg²(α/2) = х.
Получаем квадратное уравнение:
3х² - 10х + 3 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-10)^2-4*3*3=100-4*3*3=100-12*3=100-36=64;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√64-(-10))/(2*3)=(8-(-10))/(2*3)=(8+10)/(2*3)=18/(2*3)=18/6=3;x_2=(-√64-(-10))/(2*3)=(-8-(-10))/(2*3)=(-8+10)/(2*3)=2/(2*3)=2/6=1/3.
Получаем 2 решения: tg²(α/2) = 3,      tg(α/2) = √3,
                                     tg²(α/2)  = 1/3,   tg(α/2) = 1/√3.
Отсюда угол равен 120 и 60 градусов, что соответствует острому и тупому углам трапеции в сечении конуса.

ответ: угол между образующей конуса и плоскостью его основания равен 60 градусов.
Вусеченный конус вписан шар, объем которого составляет 6/13 объема конуса. найдите угол между образу
4,5(29 оценок)
Открыть все ответы
Ответ:
karinnka2002
karinnka2002
10.11.2021

Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость.   Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒  АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2  => KD=KB*2 = 10см.

ответ: KD=10см.

4,8(91 оценок)
Ответ:
Aleks19102007
Aleks19102007
10.11.2021

PΔABC ≈ 27.91

Объяснение:

Чтобы найти периметр треугольника, надо сначала найти длину каждой стороны треугольника, в этом нам формула квадрата расстояния между двумя точками в пространстве, или можно взять формулу модуля вектора, кому как удобно...

AB² = (x₁ - x₂)² + (y₁ - y₂)² + (z₁ - z₂)² ;

AB² = (2 - 3)² + (4 + 5)² + (-2 - 1)²  = (-1)² + 9² + (-3)² = 1+81+9 = 1

AB = √91 ≈ 9,54;

BC² = (3 + 2)² + (-5 - 3)² + (1 - 5)² = 5² + (-8)² + (-4)² = 25+64+16 = 105

BC = √105 ≈ 10,25;

AC² = (2 + 2)² + (4 - 3)² + (-2 - 5)² = 4² + 1² + (-7)² = 16+1+49 = 66

AC = √66 ≈ 8,12

PΔABC ≈ 9,54 + 10,25 + 8,12 ≈ 27.91

4,7(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ