М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Margoha80029071
Margoha80029071
02.09.2020 23:13 •  Геометрия

Высота правильной треугольной пирамиды равна а√3, радиус окружности, описаной около ее основания, 2а. найдите: а) апоферму пирамиды; б) угол между боковой гранью и основанием; в)площадь боковой поверхности; г) плоский угол при вершине пирамиды. , !

👇
Ответ:
anisiloppoosa
anisiloppoosa
02.09.2020
Решение: 
1) Зная, что R=2а найдем сторону основания по формуле R=AВ√3/3, отсюда АВ=3R/√3=3*2a/√3=6a/√3. 

Рассмотрим прямоугольный треугольник СМВ (угол М=90 градусов, МВ=АВ/2=3а√3, ВС=6a/√3). По теореме Пифагора МС=√(ВС^2-MB^2)= √(36а^2/3-9a^2/3)= √(12a^2-3a^2)= √9a^2=3a. Медиана разбивается точкой О на отрезки пропорциональные 2:1 от вершины. Таким образом отрезок СО=2а, Ом=а. 

Рассмотрим прямоугольный треугольник МОК (угол О=90 градусов, МО=а, КО=а√3). По теореме Пифагора найдем МК, которая является апофемой. МК=√(МО^2+KO^2)= √(a^2+3a^2)= √4a^2=2a/ 

2) Тангенс угла КМО=КО/МО=а√3/а=√3, значит угол КМО=60 градусов (угол между боковой гранью и основанием) . 

3) Площадь боковой поверхности = ½ * периметр основания * апофему=1/2 * 3*6а/√3 * 2а=18а^2/√3=6√3а^2.
4,6(59 оценок)
Открыть все ответы
Ответ:
creeperm477
creeperm477
02.09.2020

a) \frac{\sqrt{3} }{3}; ~~b) \frac{1}{3}

Объяснение:

Смотри прикреплённый рисунок.

Пусть а = 8 см - ребро тетраэдра

a) В основании АВС проведём высоту АЕ ⊥ ВС.    АЕ = 0,5а√3;

Опустим высоту SO на плоскость АВС.

AO=\frac{2}{3} AE = \frac{2}{3}\cdot a\frac{\sqrt{3} }{2} = \frac{a\sqrt{3} }{3}.

Угол между прямой SA и плоскостью АВС есть угол SAO

b) В основании АВС проведём высоту BK ⊥ AС.    BK = 0,5а√3;

Опустим высоту SO на плоскость АВС.

KO= \dfrac{1}{2} BK = \dfrac{1}{3}\cdot \dfrac{a\sqrt{3} }{2} =\dfrac{a\sqrt{3} }{6}

Проведём в грани SAC апофему SK = 0,5а√3

Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей  SAC и АВС

Поскольку тетраэдр правильный, то углы между  любой боковой плоскостью и плоскостью основания  равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.


ГЕОМЕТРИЯ ОДНО ЗАДАНИЕ Дан правильный тетраэдр SABC. Выполните рисунок. Найдите: а) косинус угла меж
4,5(84 оценок)
Ответ:
Сашенька228
Сашенька228
02.09.2020

a) \frac{\sqrt{3} }{3}; ~~b) \frac{1}{3}

Объяснение:

Смотри прикреплённый рисунок.

Пусть а = 8 см - ребро тетраэдра

a) В основании АВС проведём высоту АЕ ⊥ ВС.    АЕ = 0,5а√3;

Опустим высоту SO на плоскость АВС.

AO=\frac{2}{3} AE = \frac{2}{3}\cdot a\frac{\sqrt{3} }{2} = \frac{a\sqrt{3} }{3}.

Угол между прямой SA и плоскостью АВС есть угол SAO

b) В основании АВС проведём высоту BK ⊥ AС.    BK = 0,5а√3;

Опустим высоту SO на плоскость АВС.

KO= \dfrac{1}{2} BK = \dfrac{1}{3}\cdot \dfrac{a\sqrt{3} }{2} =\dfrac{a\sqrt{3} }{6}

Проведём в грани SAC апофему SK = 0,5а√3

Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей  SAC и АВС

Поскольку тетраэдр правильный, то углы между  любой боковой плоскостью и плоскостью основания  равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.


ГЕОМЕТРИЯ ОДНО ЗАДАНИЕ Дан правильный тетраэдр SABC. Выполните рисунок. Найдите: а) косинус угла меж
4,4(1 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ