Дано: треугольник DEK- равнобедренный. DK=16см EK=ED, как стороны равнобедренного треугольника. угол DEF=43, Найти KF, углы DEK, EFD. Решение. 1)Угол DEF=FEK=43, потому что EF -биссектриса. Отсюда следует, что угол dek= 43+43=96. 2) так как треугольник равнобедренный, углы при основании равны. Значит (180-96)/2=42 градуса - угол DEK. 3) EFD= 90 градусов, потому что в равнобедренном треугольнике биссектриса, проведенная из вершины к основанию, = высоте = медиане. 4) По свойству выше мы находим FK, как половину DK, то есть 16/2=8 ответ: KF=16, DEK=42, EFD=90.
Периметр-сумма всех сторон,значит а)60-(13*2)=60-26=34, значит 34:2=17-вторая сторона параллелограмма (ответ:13 и 17) б)пусть х-сторона параллелограмма,значит получим уравнение Х+Х+(4+Х)+(4+Х)=60, отсюда выразим х. 4Х=60-8, Х=13 -одна сторона, х+4=13+4=17- другая сторона. (ответ: 13 и 17) в) пусть Х-сторона параллелограмма, тогда Х+Х+3Х+3Х=60, отсюда х=7.5- одна сторона, другая сторона 3х= 3* 7,5=22.5. (ответ:7.5 и 22.5) г)пусть х и у -стороны параллелограмма,тогда составим систему Х+У=7 И 2Х+2У=60,решим систему и получим у = 11,5, х= 18.5.(ответ:11.5 и 18.5) д) решение такое же как и у задачи №3.