1) В основании 6-угольной пирамиды лежит правильный 6-угольник, который состоит из 6 равносторонних треугольников. Если сторона равна 4, то площадь S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3 Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3 Эта высота h - один катет прямоугольного треугольника, высота самой пирамиды H - второй катет, а апофема L - гипотенуза L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии. Это можно узнать и самому. Площадь боковой поверхности S(бок) = 6*a*L/2 = 3*4*4 = 48. Площадь полной поверхности S = S(осн) + S(бок) = 48 + 24√3 Объем пирамиды V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3
2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат. И опять же, апофему можно вычислить, зная сторону основания и высоту. S(осн) = 8^2 = 64 S(бок) = 4*a*L/2 = 2*8*5 = 80 Площадь полной поверхности S = S(осн) + S(бок) = 64 + 80 = 144 Объем пирамиды V = 1/3*S(осн)*H = 1/3*64*3 = 64
3) Если площадь основания (квадрата) равна 36, то сторона а = 6 И опять же, апофему можно вычислить, зная сторону основания и высоту. S(бок) = 4*a*L/2 = 2*6*6 = 72 Площадь полной поверхности S = S(осн) + S(бок) = 36 + 72 = 108 Объем пирамиды V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3
Все ребра треугольной призмы равны. Найдите площадь основания призмы, если площадь ее полной поверхности равна 8+16√ 3
Полная площадь призмы равна сумме площадей двух оснований и площади боковой поверхности. Пусть ребро призмы равно а. Грани - квадраты, их 3. S бок=3а² S двух осн.=( 2 а²√3):4=( а²√3):2 По условию 3а²+(а²√3):2=8+16√3 Умножим обе стороны уравнения на 2 и вынесем а² за скобки: а²(6+√3)=16+32√3)=16(1+2√3) а²=16(1+2√3):(6+√3) Подставим значение а² в формулу площади правильного треугольника: S=[16*(1+2√3):(6+√3)]*√3:4 S=4(√3+6):(6+√3)=4 (ед. площади)
Думаю, решение понятно. Перенести решение на листок для Вас не составит труда.