Проведём осевое сечение через боковое ребро. Получим равнобедренный треугольник с основанием и одной боковой стороной, равными а√3/2, третья равна а. Высота тетраэдра делит высоту основания в отношении 2:1. Отсюда можно найти высоту Н тетраэдра. Н = √(а² - ((2/3)*(а√3/2))²) = а√(2/3). Площадь основания So = a²√3/4. Находим объём V тетраэдра: V = (1/3)SoH = (1/3)(a²√3/4)*(а√(2/3)) = a³√2/12.
Высота проведена к большему основанию. У нас получился прямоугольный треугольник, две стороны нам известны, находим третью по теореме Пифагора: 5²-4²=х² х²=25-16=9 х=3 Проводим высоту из второй вершины к этому же основанию.У нас получается два прямоугольных треугольника. Так трапеция равнобедренная, то гипотенузы равны Высоты одной трапеции равны, следовательно, у нас есть равные катеты Треугольники равны по гипотенузе и катету, значит, неизвестная сторона второго треугольника тоже равна 3 После проведения двух высот у нас получился квадрат, сторона которого равна меньшему основанию.Находим её: 10-3-3=4 Средняя линия равна полусумме оснований: (10+4)/2=7 Площадь трапеции равна полусумме оснований на высоту (10+4)/2 х4=28
Правильный прямоугольник - многоугольник с равными сторонами - это квадрат. Центром окружности, описанной около прямоугольника , является точка пересечения его диагоналей. Сами диагонали являются диаметрами описанной окружности, а их половинки - радиусами. Кроме того, Диагональ квадрата является гипотенузой прямоугольного треугольника, которая делится центром окружности пополам. Гипотенузу можно найти по теореме Пифагора : суммая квадратов катетов равна квадрату гипотенузы. Обозначим гипотенузу D. D*2= 10*2+10*2=200 D=√200, R= 10√2 / 2
Получим равнобедренный треугольник с основанием и одной боковой стороной, равными а√3/2, третья равна а.
Высота тетраэдра делит высоту основания в отношении 2:1.
Отсюда можно найти высоту Н тетраэдра.
Н = √(а² - ((2/3)*(а√3/2))²) = а√(2/3).
Площадь основания So = a²√3/4.
Находим объём V тетраэдра:
V = (1/3)SoH = (1/3)(a²√3/4)*(а√(2/3)) = a³√2/12.