пусть х - сторона одного из пяти квадратов, на которые разбит двор. Тогда:
12х = 5400 (по формуле периметра)
х = 5400÷12 = 450 см
Отсюда площадь двора равна:
S = 5х² = (450)² × 5 = 1012500 см² = 101,25 м²
ответ: 101,25 м²
Объяснение:
Так как периметр - это сумма всех сторон фигуры, то мы имеем право разбить все стороны двора на равные отрезки (на стороны одного из пяти квадратов) и посчитать их количество. Здесь их получается 12, а чтобы не складывать 12 раз одно и то же число друг с другом, мы записываем это как умножение длины отрезков (х) на их количество (12).
5х² - это сумма площадей всех 5 квадратов, из которых состоит двор, то есть площадь целого двора. Так как площадь квадрата (S) равна квадрату его стороны (х²), то нам остаётся умножить эту площадь на количество равных квадратов (5) и получить площадь всего двора. Надеюсь всё понятно объяснил :)
Обозначим прямоугольник АВСД. Диагональ АС. На неё из вершины В опущен перпендикуляр ВК, и по условию АК=9, КС=16. ВК это общая высота в прямоугольных треугольниках АВК и СВК. Отсюда по теореме Пифагора АВ квадрат-АК квадрат=ВС квадрат-КС квадрат. Или АВ квадрат-81=ВС квадрат-256. Отсюда ВС квадрат=АВ квадрат+175. В треугольнике АВС также АВ квадрат+ ВС квадрат= АС квадрат. Или АВ квадрат+ВС квадрат=(9+16)квадрат. АВ квадрат+ ВС квадрат=625. Подставим сюда ранее найденное выражение для ВС квадрат и получим АВ квадрат+(АВ квадрат+175)=625. Отсюда АВ=15. ВК=корень из(АВ квадрат-АК квадрат)=корень из(225-81)=12. Искомый тангенс угла ВАК, tg=ВК/АК=12/9=4/3.
Луч - это часть прямой ограниченая только началом. Луч может быть бесконечен лишь в одну сторону.
Луч это бесконечная прямая следовательно нужно нарисовать прямую, а чтобы получился луч нужно ограничить его началом, то есть поставить точку на конце прямой (заметьте нужно ставить одну точку на конце прямой)