Высоты тупоугольного треугольника, проведенные из вершин острых углов, пересекают прямые, содержащие их стороны, вне треугольника.
Рассмотрим прямоугольные ∆ АСА1 и ∆ ВСВ1.
Острые углы при С у них равны как вертикальные.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны. ⇒
∆ АСА1 ~ ∆ ВСВ1
Тогда синусы их равных углов равны, т.е. отношение сходственных катетов к гипотенузам, равно. СА1/ АС=СВ1/ВС
III признак подобия треугольников.
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Доказано.
сечение (MKHPNF)
Объяснение:
известны точки M N P
в плоскости AA1B1B проводим прямую MK параллельную PN
точка K = MK ∩ A1B1
в плоскости CC1D1D проводим прямую PN
точка L = PN ∩ DD1
в плоскости AA1D1D проводим прямую ML
точка F = ML ∩ AD
в плоскости BB1C1C проводим прямую HP параллельную ML
точка H = HP ∩ B1C1
проводим прямую через точки K и H
проводим прямую через точки F и N
получаем сечение (MKHPNF) куба ABCDA1B1C1D1 плоскостью MNP