Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия. Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.
Смотри рисунок.
Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).
Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:
О((-4+2)/2; (2-3)/2) или О(-1;-0,5).
R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.
ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.
Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.
В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0. => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).
1. 32 см.
2. 53°, 53°, 127°,127°
3. Медиана равна 13 см
4. а=8 см, в=12 см
Объяснение:
1. Периметр - сумма сторон. Противолежащие стороны параллелограмма равны. Значит периметр равен 5+5+11+11=32 см
2. В ромбе противолежащие углы равны, а сумма всех углов 360°
Значит сумма двух углов 53+53=106°
Сумма двух других углов равна 360-106=254°. ТОгда один угол равен 127°
3. ΔАВС - прямоугольный, АВ=12, ВС=10, АК-медиана, проведенная к ВС. ВК=ВС=5 см.
ΔАВК - прямоугольный, АК - гипотенуза. АК²=АВ²+КВ²=144+25=169
АК=13 см
4. а и в стороны прямоугольника
Площадь равна а*в=96 см. а=96/в
а:в=2:3, а=2в/3
2в/3=96/в
2в²=288
в²=144
в=12
а=8