11. Вроде как сумма всех внешних углов равна 900 градусов. (360*3-180(сумма всех внутренних углов треугольника). 360-60 = 300 - внешний угол того что 60 градусов. 900 - 300 = 600 градусов осталось. Т.к. один в двое больше другого, то они равны 200 и 400 соответственно. А разность = 200 градусов.
12. Если это диаметры одной и той же окружности (а как известно диаметр проходит через центр) то они не могут быть параллельны.
13. , где x и y углы.
14. представим угол А за Х; x + 5х + x + 40 = 180; 7x = 140; x = 20 градусов. соответственно угол А = 20; угол В = 60 градусов, а угол С = 100 градусов.
15. Так как BD - это высота, то углы BDC и BDA прямые. Также BD - биссектриса угла MDH. Следовательно углы HDC и MDA равны. А так как треугольник ABC - равнобедренный, то и отрезки HC и MA равны. Но все равно желательно нарисовать.
16. Общий угол при пересечении прямых = 180 градусов. Значит второй угол у одной из параллельных прямых равен 180 - 112 = 68 градусов. У второй параллельной прямой то же самое только зеркально отображено. Тоже желательно нарисовать.
17. Треугольник АВС является равнобедренным. А у него углы у основания одинаковые. А так как углы CAD и BAC равны, то можно прийти к выводу что и стороны у этой фигуры равны. Но это не обязательно квадрат.
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
найдём первый угол 290-180=110
при пересечение 3 прямой все углы смежные=180
180-110=70