ответ:S=16π
Объяснение:в основании образуется треугольник, состоящий из двух радиусов, к-ые относятся к дуге с 60°, и сторонной, полученной сечением квадрата. Сторону квадрата находим по Пифагору: √(a²+a²) = 4√2, a = 4. Основание треугольника так же равно 4. Этот треугольник, в первую очередь, является равнобедренным, так как имеет две равных сторон (радиусов окружности), но по той причине, что вершина равна 60, это правильный треугольник. Следовательно, все его стороны равны, что указывает, что радиусы равны 4. Зная радиус, мы можем найти длину окружности: 2πr=4π. Высотой цилиндра является сторона квадрата, т.к. второй пересекает его параллельно оси. Отсюда S=4π*4=16π
высота основания (треугольника) =8/2+2=6
сторона основания=6/(v3/2)=6*2/v3=12/v3
объём=4v3*(12/v3)^2/(4v3)=144/3=48
диагональ ромба равна
d^2=l^2-h^2
d^2=(15)^2-9^2=144
d=12
и половина диагонали равна d/12=6
Сторона ромба равна
p/4=40/4=10
Так как в ромбе в точке пересечения делятся по полам и перпендикулярные
то половина второй диагонали равна
d1^2=a^2-(d/2)^2=100-36=64
d1^2=8 и вся диагональ равна 16
Площадь ромба равна
S=d1*d2/2=12*16/2=96
A объем параллелепипеда равен
V=Sосн *H=96*9=864