Один из углов прямоугольного треугольника равен 60 градусов,а сумма гипотенузы и меньшего катета равна 18 см. найдите гипотенузу и меньший катет заранее огромное
Решение: Найдем третий угол: 180°-(60°+90°) = 30° Сторона против угла в 30° - в два раза меньше гипотенузы,тогда пусть эта сторона будет х, тогда гипотенуза - 2х,ихняя сумма равна 18,тогда имеем уравнение: 2х+х = 18 3х = 18 х = 6 см.
Гипотенуза = 6*2 =12 см. ответ: катет 6 см,гипотенуза 12 см.
Давайте без точки О. 1. Строим АК. То есть надо разделить угол А ПОПОЛАМ. Из точки А циркулем делаем засечки D и E (одним радиусом) . Затем ставим острие циркуля в точки D и E и описываем равными радиусами дуги, пересекающиеся в точке F. Прямая, соединяющая А и F делит угол А пополам. Продолжаем эту прямую до пересечения со стороной ВС и получаем точку К. 2) Строим ВМ. То есть надо разделить сторону АС пополам. Одним раствором циркуля (большим половины АС) делаем засечки с двух сторон от АС. Соединяем точки засечек. Пересечение этой прямой с АС и дает точку М - середину АС. 3)Строим СН. То есть надо опустить из точки С перпендикуляр на АВ. Из точек А и Б проводим окружности, проходящие через точку С. Соединяем точки пересечения этих окружностей. Точка пересечения этой прямой с о стороной АВ и есть точка Н.
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Найдем третий угол:
180°-(60°+90°) = 30°
Сторона против угла в 30° - в два раза меньше гипотенузы,тогда пусть эта сторона будет х, тогда гипотенуза - 2х,ихняя сумма равна 18,тогда имеем уравнение:
2х+х = 18
3х = 18
х = 6 см.
Гипотенуза = 6*2 =12 см.
ответ: катет 6 см,гипотенуза 12 см.