Решите 1. признаки равенства прямоугольного треугольника.2.доказать свойство вертикальных углов 3.в равнобедренном треугольнике abc с основанием ac=37 см,внешний угол при вершине b равен 60 градусов.найти расстояние от вершины c до прямой ab.
1.Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны. 2.Рассмотрим две пары смежных углов а, с и с, b. Их сумма равна 2d. При этом углы a и b — вертикальные:
a+c=2d
b+c=2d
Из равности правых частей уравнений выплывает равенство их левых частей:
a+c=b+c
В этом равенстве в обеих его частях присутствует один и тот же c. Таким образом, можно от обеих частей данного равенства можно отнять c, при этом равенство останется правильным. Получим:
a=b
Полученный результат говорит о том, что вертикальные углы равны между собой. 3. в файле
Не любая , а биссектриса к основанию ( а не к боковой стороне) совпадает с высотой и медианой. Извините, не прочитал, что в равностороннем. Для равнобедренного рассуждение такое: Это вытекает из того, что биссектриса делит треугольник на два равных ( по первому признаку, т.е. по двум сторонам и углу между ними). В этих треугольниках напротив равных углов -равные стороны: отрезки на которые биссектриса делит основание. Значит она медиана. Два угла с вершиной на середине основания тоже равны. А так как они смежные т их сумма равна 180 градусам, то и они равны 90 градусам. Значит биссектриса совпадает с высотой В равностороннем - то же рассуждение для любой стороны. .
Пирамида имеет в основании квадрат или правильный треугольник?
1. поверхность грани 96/4=24 длина стороны основания 24/4=6 апофема равна высоте к стороне основания, апофему обозначим а
0,5*6*а=24 а=24/3=8
2. поверхность 96/3=32 сторона основания 24/3=8 0,5*8*а=32 а=32/4=8
видим равенство апофем, более детально - пусть n боковых граней, s = 96/n сторона основания 24/n 0.5*24/n*a=96/n 12a=96 a=8
видим, что можно дать другие числа, а не 96 и 24 и посчитать апофему, она не будет зависеть от числа сторон правильной пирамиды, а только от конкретных значений площади боковых граней и периметра основания.
2.Рассмотрим две пары смежных углов а, с и с, b. Их сумма равна 2d. При этом углы a и b — вертикальные:
a+c=2d
b+c=2d
Из равности правых частей уравнений выплывает равенство их левых частей:
a+c=b+c
В этом равенстве в обеих его частях присутствует один и тот же c. Таким образом, можно от обеих частей данного равенства можно отнять c, при этом равенство останется правильным. Получим:
a=b
Полученный результат говорит о том, что вертикальные углы равны между собой.
3. в файле