Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
Значит BC = AK = 8 см (по определению параллелограмма). Средняя линия трапеции равна полусумме оснований. В нашем случае основания: BC = 8 см, AD = AK + KD = 14 см. Тогда средняя линия равна (BC + AD)/ 2 = (8 + 14)/2 = 11 см. 2. Проведем вторую высоту из точки С к стороне AD. Получаем выосту CM. СM || BK, BC || KM => KBCM - параллелограмм ( в нашем случае он также явлется прямоугольником ). Значит BC = KM = 12 см. Так как трапеция равнобедренная => АК = MD. AK + MD = AD - BC = 28 - 12 = 16. AK = 16 / 2 = 8 см. 3. Рассмотрим треугольник ABD - прямоугольный. ( по условию угол B = 90° ) Угол A = 65°. Сумма углов в треугольнике всегда равна 180°, значит угол D = 180 - 65 + 90 = 25°. BC || AD, BD - секущая. Угол BDA = углу DBC = 25° ( накрест лежащие ). Треугольник ВСВ - равнобедренный ( BC = CD по условию) значит углы при основании равны => угол DBC = углу CDB = 25°. Так как сумма углов в тр-ке всегда равна 180° => угол С = 180 - 25 + 25 = 130°. Выходит угол А = 65 °, угол B = 90 + 25 = 115°, угол С = 130°, угол D = 25 + 25 = 50°.