боковые стороны равны EP=PF=NP=PM по условию задачи и угол EPN равен углу MPF как противолежащие, и так как отрезки EN и MF находятся на одинаковом расстоянии от точки Р и являются основаниями равных треугольников с противолежащими углами, то они параллельны друг другу
1) В параллелограмме противолежащие стороны равны и параллельны, противолежащие углы равны.
ДЕ - биссектриса, ⇒∠ЕDА=∠ЕDС.
∠СЕD=∠ЕDА – накрестлежащие. ⇒
треугольник СЕD равнобедренный, а так как углы при основании ЕD равны 60°, он - равносторонний.
Угол С=60°, угол А=угол С=60°. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°. ⇒∠В=∠D=120°
СD=ЕС=АС=4 см. АD=ВС=3+4=7 см
Р (АВСD)=2•(7+4)=22 см
Четырехугольник АВЕD - равнобедренная трапеция, так как ВЕ║|АD, и АВ=СД⇒АВ=ЕД.
-------------------
2) ∆ СЕD прямоугольный, Сумма острых углов прямоугольного треугольника 90°. ⇒
угол ЕСD=90°- 45*=45°⇒ ∆ СЕD – равнобедренный.
CE=ED=5
Перпендикуляр СЕ параллелен и равен АВ. -⇒
АВ=СЕ=5 см
1)В первую очередь докажем, что треугогльник EPN= треугольнику MPF( по углам вертикальным и EP=PF,MP=PN, т.е. по первому признаку равенства треугольников)
2) Т.к. треугольнки равы, следовательно, угол NEP и MFP равны, также они являются накрест лежащими
3) Из (2) следует, что по признакам параллельности(если угол NEP и MFP равны) EN||MF ч.т.д.