Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
Угол АВД равен 37 - опирается на ту же дугу, что и угол АСД.
Из треугольника АВД находим угол ВАС = 180-37-43-22 = 78.
Значит, угол А = 78+22 = 100 градусов.
Из треугольника АСД находим угол СДВ = 180-22-37-43 =78.
Значит, угол Д = 43+78 = 121 градус.
Угол ВСА равен углу ВДА, как опирающиеся на одну дугу АВ и равен 43 градуса.
Значит, угол С = 37+43 = 80 градусов.
Угол СВД равен углу САД, как опирающийся на одну и ту же дугу СД = 22 градуса.
Значит, угол В = 37+22 = 59 градусов
А+В+С+Д= 100+59+80+121 = 360 градусов.
Подробнее - на -