Могут ли быть равными все внутренние накрест лежащие углы и все внутренние односторонние углы,образованные при пересечении двух прямых третьей? ответ объясните
А) если начертить прямую АВ не пересек плоскость то проведя расстояния (от А до плоск=А (АА₁) от В до плоск=В(ВВ₁) и соединив А₁В₁ ) мы заметим что образуется четырехугольник причем это трапеция (стороны АА₁ и ВВ₁ параллельны) то СС₁ будет средней линией трапеции а это равно=(А+В)/2 б) имеет два случая: когда середина АВ совпадает с плоскосью и когда не совпадает мы будем рассмотреть когда середина АВ не совпадает с точкой пересечения АВ с плоск(точка О) тогда отрезок СС₁ образует новый треуг.(СОС₁) причем угол СС₁О=90 (я взяла отрезок СС₁ на треуг. ВВ₁О) и угол О общ угол у СОС₁ и ВОВ₁ и угол 90 есть то эти треугольники подобные то СС₁/ВВ₁=ОС/ОВ отсюда СС₁=(ОС×ВВ₁)/ОВ
Расчет длин сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = √32 ≈ 5.656854249, BC = √((Хc-Хв)²+(Ус-Ув)²) = √128 ≈11.3137085, AC = √((Хc-Хa)²+(Ус-Уa)²) = √160 ≈12.64911064. Отсюда видим, что треугольник прямоугольный - сумма квадратов двух сторон (32+128=160) равна квадрату третьей стороны (160).
Точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, - это центр описанной окружности.
В прямоугольном треугольнике центр описанной окружности находится на середине гипотенузы. У нас это АС. Находим координаты точки О как середины отрезка АС: О((-4+8)/2=2; (3-1)/2=1) = (2; 1).
ответ: точка пересечения перпендикуляров, восстановленных из середин сторон треугольника, имеет координаты (2; 1).
p.s. В общем случае надо было находить уравнения срединных перпендикуляров (достаточно двух), затем найти точку их пересечения.