Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
S = 1/2*14*12 = 7*12 = 84 см²
Площадь через сторону 13 и высоту к ней
S = 1/2*13*h₂ = 84 см²
1/2*13*h₂ = 84
h₂ = 84*2/13 = 168/13 см
Площадь через сторону 15 и высоту к ней
S = 1/2*15*h₃ = 84 см²
1/2*15*h₃ = 84
h₃ = 84*2/15 = 168/15 см
Найдём по известным сторонам первую высоту
Полупериметр
p = 1/2(13 + 14 + 15) = 21 см
Площадь по формуле Герона
S = √(21(21-13)(21-14)(21-15)) = √(21*8*7*6) = 7√(3*8*6) = 7*3√(8*2) = 7*3*4 = 84 см²
Площадь через сторону 14 и высоту к ней
S = 1/2*14*h₁ = 84 см²
1/2*14*h₁ = 84
h₁ = 84/7 = 12 см