4) Найдем точки пересечения касательной с осями координат x = 0: f(0) = -13; f(x) = 0: 5x - 13 = 0; x = 13/5
5) Этот треугольник - прямоугольный с катетами 13 и 13/5. Его площадь равна половине произведения катетов. S = 1/2*13*13/5 = 169/10 = 16,9 ответ: 1. 16,9
Решение: Площадь треугольника находится по формуле: S=1/2*a*h В равнобедренном прямоугольном треугольнике a=h, поэтому площадь такого треугольника можно вычислить по формуле: S=1/2*a² Сторону (а) треугольника, которая является катетом можно найти из синуса угла. sinα=a/c где с- гипотенуза треугольника В равнобедренном прямоугольном треугольнике два острых угла равны по 45 град. (180град -90град=90град; 90град : 2=45 град) sin45=√2/2 или √2/2=а/14 а=14*√2/2=7√2 S=1/2*(7√2)²=1/2*49*2=98/2=49(cм²) Второй решения: Сторону а в равнобедренном прямоугольном треугольнике можно найти и по теореме Пифагора: с²=а²+а² с²=2а² а²=с²/2 а²=14²/2=196/2=98 S=1/2*a² или S=1/2*98-49(см²)
(4x)² + 36² = (5x)²
16x² + 36² = 25x²
36² = 9x²
12² = x²
x = 12 см
h = 48 см
---
Из красного треугольника по теореме Пифагора
b² + 48² = 52²
b² = 52² - 48² = (52-48)(52+48) = 4*100 = 400
b = 20 см
a = b+36 = 56 см
S = 1/2(a+b)h = 1/2(56 + 20)*48 = 76*24 = 1824 см²