ответ: 1:4 и 1:3
Объяснение: Обозначим вершины параллелограмма АВСD , начиная с левого нижнего по часовой стрелке.
Обозначим точки пересечения прямой со сторонами AD - T , ВС -Р
Обозначим точки пересечения диагонали АС с прямой РТ -М, а диагонали BD с прямой РТ -К.
Тогда по условию задачи АМ:МС=1:3
ВК:КD=1:2
Заметим, что ∡РТА= ∡ТРС и ∡ТАС = ∡РСА ( накрест лежащие при параллельных прямых AD и ВС)
=>ΔAMT ≅ ΔCMP ( подобны по 2-м углам)
Тогда АМ/CM=AT/PC => AT/PC=1/3 (1)
Аналогично ΔTKD ≅ ΔPKB ( подобны по 2-м углам)
TD/BP=KD/KB=2 (2)
Пусть АТ=х . Тогда РС=3*х
Пусть AD=BC=y. Тогда (2) можно записать так :
(у-х)/(y-3*x)=2
y-x=2*y-6*x
y-5*x=0
Поделим обе части уравнения на у:
1-5 * (х/y)=0
5*(x/y)=1
x/y=1/5 => AT/TD=1:4
=> PC/BC=3x/y=3/4
=> BP:PC=1:3
ответ: 1:4 и 1:3
Объяснение: Обозначим вершины параллелограмма АВСD , начиная с левого нижнего по часовой стрелке.
Обозначим точки пересечения прямой со сторонами AD - T , ВС -Р
Обозначим точки пересечения диагонали АС с прямой РТ -М, а диагонали BD с прямой РТ -К.
Тогда по условию задачи АМ:МС=1:3
ВК:КD=1:2
Заметим, что ∡РТА= ∡ТРС и ∡ТАС = ∡РСА ( накрест лежащие при параллельных прямых AD и ВС)
=>ΔAMT ≅ ΔCMP ( подобны по 2-м углам)
Тогда АМ/CM=AT/PC => AT/PC=1/3 (1)
Аналогично ΔTKD ≅ ΔPKB ( подобны по 2-м углам)
TD/BP=KD/KB=2 (2)
Пусть АТ=х . Тогда РС=3*х
Пусть AD=BC=y. Тогда (2) можно записать так :
(у-х)/(y-3*x)=2
y-x=2*y-6*x
y-5*x=0
Поделим обе части уравнения на у:
1-5 * (х/y)=0
5*(x/y)=1
x/y=1/5 => AT/TD=1:4
=> PC/BC=3x/y=3/4
=> BP:PC=1:3
h - высота трапеции
По теореме Пифагора для красного треугольника
p₁² + h² = 17² (1)
По теореме Пифагора для малинового треугольника
p₂² + h² = 25² (2)
и известна длина нижнего основания
p₁ + p₂ + 16 = 44
p₁ + p₂ = 28 (3)
Три уравнения, три неизвестных
Из второго вычтем первое
p₂² - p₁² = 25² - 17² (4)
Из третьего выразим p₂
p₂ = 28 - p₁
и подставим в четвёртое
(28 - p₁)² - p₁² = 25² - 17²
28² - 56p₁ + p₁² - p₁² = (25 - 17)(25 + 17)
28² - 56p₁ = 8*42
сократим на 4
14² - 14p₁ = 2*42
14*14 - 14p₁ = 2*3*14
сократим на 14
14 - p₁ = 6
p₁ = 8
Подставим значение p₁ в первое уравнение
8² + h² = 17²
64 + h² = 289
h² = 289 - 64
h² = 225
h = √225 = 15
И это ответ :)