Точка, лежащая на биссектрисе угла, равно удалена от сторон этого угла. Наименьшее расстояние от точки до прямой - перпендикуляр. Опускаем перпендикуляр из точки Д на ВА - точка М. Треугольники ВМД и ВСД прямоугольные. Угол ДВС равен углу МВД, т.к. ВД - биссектриса угла В. Прямоугольные треугольники ВМД и ВКС равны по гипотенузе и острому углу. А в равных треугольниках против равных углов лежат равные стороны. Против угла ДВС лежит сторона ДС, а против угла МВД лежит сторона МД. Значит стороны эти равны, точка Д равноудалена от прямых ВС и АВ.
|а|=√(-3)²+2²=√13; |b|=√(-4)²+3²=√25=5. α-угол между векторами а и b
а·b=√13·5·соsα=5√13·соsα≈5√13.
соsα≈1