Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,= 1/2( a+b). Следовательно нужно найти высоту. Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б) По теореме Пифагора х² + х²= 40². 2 х²=1600. х²=800. х=20√2. S= 42*20 √2. S= 840√2
Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,= 1/2( a+b). Следовательно нужно найти высоту. Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б) По теореме Пифагора х² + х²= 40². 2 х²=1600. х²=800. х=20√2. S= 42*20 √2. S= 840√2
2x - 6 - 2x(x² + 2x - 2x - 4) = 2x - x² - 6 + 3x ;
2x - 6 - 2x(x² - 4) = - x² + 5x - 6 ;
2x - 6 - 2x³ + 8x = - x² +5x - 6 ;
2x - 2x³ + 8x + x² - 5x = - 6 +6 ;
- 2x³ + x² + 5x = 0 | *(-1) ;
2x³ - x² - 5x = 0 ;
x(2x² - x - 5) = 0;
x₁ = 0 или 2x² - x - 5 = 0
D = b² - 4ac = (-1)² - 4*2*(-5) = 1 + 40 = 41
x₂ = (-b + √D) / 2*a = (1 + √41) / 4 <==>
x₃ = (-b - √D) / 2*a = (1 - √41) / 4 <==>
ответ: x₁ = 0
x₂ =
x₃ =