мде)
Дано: треугольник ABC, AB = 9 см, AC = 40 см
Найти: BC, углы B и C.
Решение: 1) BC^2 = AB^2 + AC^2 - по теореме Пифагора
BC = кореньквадратныйиз(9^2 + 40^2) = кореньквадратныйиз(81 + 1600) = корень квадратный из(1681) = 41
2) Углы можно найти многими Так например:
sin B = AC / BC = 40 / 41 = 0,9756
sin C = AB / BC = 9 / 41 = 0,2195
Угол B = 77.32
Угол С = 12.68
Это я нашёл по калькулятору арксинусов. Устно это не найдешь)
В 8-9 классах это обычно находят либо на калькуляторе, либо по таблице брадиса. Что такое арксинус в таких классах ещё мало кто знает(по программе не положено), поэтому записывать ответ в арксинусах уж точно нельзя. =)
Можно перевести значения углов после запятой в минуты(в шестидесятитеричную систему счисления)
32 - 100
x - 60
x = 19,2, округляем = 19
68 - 100
x - 60
x = 40,8 , округляем = 41
Получаем такие значения углов
B = 77 градусов 19 минут = 77°19'
C = 12 градусов 41 минута = 12°41'
=)
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Теперь о угле С. Его мы найдем по теореме косинусов. Угол С = ВС/АС = 0.5 = 1/2 = 60.
Можно и проще. Т.к. по теореме о сумме углов треугольника, сумма = 180. То угол С = 180 - 90 - 30 = 60.