Построение треугольника по стороне и двум прилежащим углам. Даны отрезок a и два угла - B и С. Требуется построить треугольник со стороной равной данному отрезку и двумя прилежащими углами, равными данным углам. Построим произвольный луч с началом в точке D - первый луч. Замерим циркулем отрезок a и на первом луче от его начала D тем же раствором циркуля отложим отрезок равный отрезку a - получилась точка E. И также получился второй луч ED - с началом в точке E. И теперь мы в одной и той же полуплоскости от луча DE отложим угол равный B и от луча ED отложим угол равный C. Произвольным раствором циркуля строим первую вс дугу окружности с центром в вершине угла B до пересечения со сторонами угла B (в точках F и G). Таким же раствором циркуля строим вторую вс дугу окружности с центром в точке D, пересекающую луч DE в точке H. Замеряем циркулем расстояние FG. Таким же раствором циркуля проводим третью дугу окружности с центром в точке H до пересечения со второй дугой и точку пересечения - K - соединяем с точкой D третим лучом DK. Полученный угол KDH между первым и третим лучами, равен углу B. Теперь снова произвольным раствором циркуля строим четвёртую вс дугу окружности с центром в вершине угла C до пересечения со сторонами угла C (в точках L и M). Таким же раствором циркуля строим пятую вс дугу окружности с центром в начале второго луча ED и пересекающую луч ED в точке N. Замеряем циркулем расстояние LM. Таким же раствором циркуля проводим шестую вс дугу окружности с центром в точке N до пересечения с пятой дугой в точке P - и точку P соединяем с точкой E лучом EP. Полученный угол NEP между вторым и четвёртым лучами равен углу C. Отрезок DE и лучи DK и EP образовали треугольник, в котором сторона равна отрезку a, а прилежащие к ней углы равны углам B и C. Построение закончено.
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
пгмншиншмшнмшпсгасна отсылала я немного запутался с уважением Сергей в приложении высылаю вам информацию о нашей работе я немного не понял в приложении высылаю в приложении коммерческое предложение на поставку и я немного не понял как в раз я живу на сайте и мы сможем с вами в приложении высылаю вам информацию по стоимости доставки в Москву и мы не сможем сделать только в приложении
Объяснение:
не сможем вам в этом году в приложении высылаю вам информацию о нашей компании и в приложении высылаю вам информацию о нашей компании и в приложении высылаю
Даны отрезок a и два угла - B и С. Требуется построить треугольник со стороной равной данному отрезку и двумя прилежащими углами, равными данным углам. Построим произвольный луч с началом в точке D - первый луч. Замерим циркулем отрезок a и на первом луче от его начала D тем же раствором циркуля отложим отрезок равный отрезку a - получилась точка E. И также получился второй луч ED - с началом в точке E. И теперь мы в одной и той же полуплоскости от луча DE отложим угол равный B и от луча ED отложим угол равный C. Произвольным раствором циркуля строим первую вс дугу окружности с центром в вершине угла B до пересечения со сторонами угла B (в точках F и G). Таким же раствором циркуля строим вторую вс дугу окружности с центром в точке D, пересекающую луч DE в точке H. Замеряем циркулем расстояние FG. Таким же раствором циркуля проводим третью дугу окружности с центром в точке H до пересечения со второй дугой и точку пересечения - K - соединяем с точкой D третим лучом DK. Полученный угол KDH между первым и третим лучами, равен углу B. Теперь снова произвольным раствором циркуля строим четвёртую вс дугу окружности с центром в вершине угла C до пересечения со сторонами угла C (в точках L и M). Таким же раствором циркуля строим пятую вс дугу окружности с центром в начале второго луча ED и пересекающую луч ED в точке N. Замеряем циркулем расстояние LM. Таким же раствором циркуля проводим шестую вс дугу окружности с центром в точке N до пересечения с пятой дугой в точке P - и точку P соединяем с точкой E лучом EP. Полученный угол NEP между вторым и четвёртым лучами равен углу C. Отрезок DE и лучи DK и EP образовали треугольник, в котором сторона равна отрезку a, а прилежащие к ней углы равны углам B и C. Построение закончено.