Рассмотрим треугольник АВС:
∠АВС = 90°, АС = 2АВ, значит ∠АСВ = 30° по свойству катета, лежащего напротив угла в 30°.
Тогда ∠ВАС = 90° - ∠АСВ = 90° - 30° = 60°, так как сумма острых углов прямоугольного треугольника равна 90°.
Диагонали прямоугольника равны и точкой пересечения делятся пополам, значит
АО = ОВ, т.е. ΔАОВ равнобедренный и углы при основании равны:
∠ОАВ = ∠ОВА = 60°, тогда
∠АОВ = 180° - (∠ОАВ + ∠ОВА) = 180° - (60° + 60°) = 60°.
∠ВОС = 180° - ∠АОВ = 180° - 60° = 120° по свойству смежных углов.
Прямая а параллельна прямой b. Через две параллельные прямые можно провести единственную плоскость. Проведем плоскость γ через прямые а и b.
Эта плоскость пересекает параллельные плоскости α и β по параллельным прямым.
Предположим, что прямая b не лежит в плоскости β. Тогда плоскость γ пересекает плоскость α по прямой а (так как прямая а лежит в обеих плоскостях), а плоскость β по прямой с. Тогда с║а.
Так как точка В лежит на прямой b, то эта точка лежит и в плоскости γ и в плоскости β. Получается, что через точку В проведены две прямые, параллельные прямой а, а это невозможно. Значит прямая b лежит в плоскости β.