Радиус вписанной в произвольный треугольник окружности равен: S/p, где S - площадь треугольника, а p - полупериметр. Пусть сторона треугольника равна а, тогда h = aК3/2; S = 1/2 * a * aK3/2 = a^2K3/4; p = 3a/2 r = a^2K3 *2/ 4 / 3a = aK3/6 = 8 => аК3 = 48 => а = 48/К3 ответ: 48 делённое на корень из 3
Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует, что: если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны. Из второго признака равенства треугольников следует, что: если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны. Рассмотрим еще два признака равенства прямоугольных треугольников: если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны. Доказательство. Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к ней углам.
Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из первого признака равенства треугольников следует, что:
если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.
Из второго признака равенства треугольников следует, что:
если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.
Рассмотрим еще два признака равенства прямоугольных треугольников:
если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Доказательство. Из теоремы о сумме углов треугольника следует, что в этих треугольниках два других острых угла также равны, поэтому они равны по второму признаку равенства треугольников, т. е. по стороне (гипотенузе) и двум прилежащим к ней углам.
r = a^2K3 *2/ 4 / 3a = aK3/6 = 8 => аК3 = 48 => а = 48/К3
ответ: 48 делённое на корень из 3