S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
Обозначим высоту треугольника АВС :ВД=Х,имеющего углы А=45*,В=105* и С=30* соответственно,согласно условия; Тогда АВ=Х\/2; ВС=2Х( сторона против угла 30*); а АД=Х и ДС=(Х\/3)2; соответственно; Находим площадь через сторону АС и высоту Х, получим:Х^2=80/(2+\/3); Откуда Х=\/80/(2+\/3); Зная высоту Х и стороны АВ=Х\/2;ВС=2Х , а также СД=Х+Х\/3/2; НАХОДИМ каждую высоту, разделив 2Sпл.на каждую из сторон: Например:2S/2X=S/\/80(2+\/3); А также 3-ю высоту:2S/X\/2=2S/(X\/2) ответ: h1=\/80/(2+\/3); h2=S/\/80(2+\/3); h3=2S/(X\/2)
такого треугольника не существует
или 60 см^2.
Объяснение:
Треугольника с заданными сторонами не существует.
13 см > 10см + 13мм, не выполнено неравенство для сторон треугольника.
Если в условии опечатка, длины стороны треугольника 13 см, 13 см, 10 см, то площадь может быть найдена по формуле Герона:
S = √p•(p-a)•(p-b)•(p-c).
p = (10+13+13):2 = 18 (см),
S = √18•(18-13)•(18-13)•(18-10) = √(18•5^2•8) = √(9•5^2•16) = 3•5•4 = 60 (см^2)
Ещё одним может быть нахождение по формуле
S = 1/2•a•h, где а = 10 см, а длина высоты найдена по теореме Пифагора из прямоугольного треугольника, образованного боковой стороной, высотой, проведённой к основанию, и половиной основания, h = 12 см.
(S = 1/2•10•12 = 60 (см^2) ).