Сумма углов, прилежащих боковой стороне трапеции, равна 180°. Следовательно сумма половин этих углов равна 90°. Треугольник, образованный биссектрисами и боковой стороной - прямоугольный.
AB - боковая сторона трапеции; AF, BF - биссектрисы. ∠A+∠B=180° (односторонние углы при параллельных) ∠A/2 +∠B/2 =90° ∠AFB= (180°-(∠A/2 +∠B/2)) =180°-90° =90°
Треугольники АВC и ADB подобны по двум углам (<BAC=<BCA, как углы при основании равнобедренного треугольника, <ABD и <BAD равны - дано). Из подобия АВ/AD=AC/AB. Или 18/12=АС/18. Отсюда АС=18*18/12=27. Тогда DC=АС-АD или DC=27-12=15.
Второй вариант решения: Треугольники АВC и ADB подобны по двум углам, значит <ABC=<ADB. Пусть <ABC=<ADB=α. Тогда по теореме косинусов из треугольника АВС: АС²=АВ²+ВС²-2*АВ*ВС*Cosα. Или АС²=2*18²(1-Cosα).(1) По теореме косинусов из треугольника АВD: АВ²=AD²+BD²-2*AD*BD*Cosα. Или 18²=12²+12²-2*12*12*Cosα. Отсюда Cosα= -1/8. Подставим это значение в (1): АС²=2*18²(1+1/8)=729. Или АС=√729=27. DC=АС-АD или DC=27-12=15. ответ: DC=15.
Пусть АВ ∩ СD = О При пересечении двух прямых получаем пары равных углов : ∠AOD = ∠COB = x и ∠AOC = ∠DOB = y По условию задачи ∠AOD + ∠DOB +∠ BOC = 278° , а сумма всех четырёх углов равна 360° . Получим систему : x + y + x = 278° 2 x + y = 278° 2 x + y = 278° ⇒ ⇒ x + y + x + y =360° 2 x + 2 y = 360° x + y = 180° Из второго уравнения выразим у чеоез х : у = 180°-х и подставим это значение в 1 уравнение : 2 х + (180° - х ) = 278° ⇒ х + 180° = 278 ° ⇒ х= 278° - 180° ⇒ х = 98° Тогда у = 180° - х = 180° - 98° = 82° ответ : 98 ° ; 82° ; 98° ; 82°
AB - боковая сторона трапеции; AF, BF - биссектрисы.
∠A+∠B=180° (односторонние углы при параллельных)
∠A/2 +∠B/2 =90°
∠AFB= (180°-(∠A/2 +∠B/2)) =180°-90° =90°
AB=√(AF^2 +BF^2) =√(12^2 +5^2) =13