По условию МК=КР, => ЕМ=ЕР(равные наклонные имеют равные проекции). ΔМЕР-равнобедренный. расстояние от точки Е до прямой МР-это перпендикуляр, проведенный из вершины равнобедренного треугольника к основанию является медианой(7 класс). (точку пересечения перпендикуляра и стороны МР обозначим буквой Д). рассмотрим ΔЕКД: 1. <ЕКД=90, т.к по условию ЕК перпендикулярна плоскости ΔМКР(прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости) 2. ЕК=8см 3. ЕД=2√41 4. по теореме Пифагора: ЕД^2=ЕК^2+КД^2, (2√41)^2=8^2+КД^2, 4*41=64+КД^2 КД^2=164-64, КД^2=100, рассмотрим ΔМДК: 1. <МДК=90 2. МД=1/2МР, МД=(1/2)*2√21, МД=√21 3. КД=10 4. по теореме Пифагора: МК^2=МД^2+КД^2, МК^2=21+100, ответ: МК=11
Я тоже тут отмечусь, уж простите :) Треугольник ABC, стороны (противолежащие углам) a, b, c, Точка K делит сторону BC = a на отрезки CK = x и BK = a - x; Точка M делит сторону AC = b на отрезки AM = y и CM = b - y; Точка N делит сторону AB = c на отрезки BC = z и AC = c - z; Получается из условия деления периметра пополам b + x = c + a - x; x = (c + a - b)/2 = p - b; CK = p - b; где p - полупериметр ABC; p = (a + b + c)/2; a - x = BK = p - c; Аналогично AM = p - c; CM = p - a; BN = p - a; AN = p - b; То есть AN*BK*CM/(BN*AM*CK) = (p - b)*(p - c)*(p - a)/((p - a)*(p - c)*(p - b)) = 1; Остается сослаться на обратную теорему Чевы.