Сумма всех углов треугольника 180, значит один внешний будет 260-180=80.Тогда смежный с ним внутренний угол равен 180-80=100 Значит, что этот внутренний угол - это угол вершины равнобедренного треугольника, так как он не может быть углом при основании (тогда бы их было два угла по 100, а это невозможно). Из этого следует, что два других угла равны (так как они при основании равнобедренного треугольника). Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним, сумма этих углов будет равна 80. (еще можно посчитать как сумма всех углов треугольника минус известный угол 180-100=80), а так как они равны, то делим на 2, значит 80/2=40. ответ: углы в треугольнике 40, 40 и 100
Отрезки касательных из точки вне окружности до точки касания с ней равны. Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. ВК и СМ - биссектрисы равных углов В и С соответственно. Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине. Аналогично СМ пересекает дугу ВС в ее середине. Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.
(AO)^2 = (SA)^^2 - (SO)^2;
(AO)^2 = 17^2 - 8^2 = 289 - 64 = 225 = 15^2;'
AO = 15;
AC = 15 *2 = 30