1.
а) 6 см, 17 см, 18 см - существует, т.к. сумма двух сторон больше третьей стороны;
б) 70 см, 30 см, 50 см - существует, т.к. сумма двух сторон больше третьей стороны;
2.
Если основание 3 см, то боковые стороны по 6 см; если основание 6 см, то такой треугольник существовать не может, т.к. сумма боковых сторон не может быть равна основанию.
3.
Если углы при основании по 40°, то угол при вершине
180-(40+40)=100°; если угол при вершине 40°, то углы при основании по (180-40):2=70°.
4.
Если внешний угол при основании 110°, то смежный с ним внутренний угол 180-110=70°, т.к. сумма смежных углов 180°.
Сумма углов при основании 70+70=140°.
Угол при вершине 180-140=40°.
Объяснение:
На продолжение отрезка AD опустим высоту из точки С в точку H.
Имеем прямоугольный треугольник ACH катет которого СН противолежит углу А=30. а гипотенуза АС=8.
Отсюда СН=АС:2=8:2-4 (по св-ву прямоугольного треугольника с углом 30)
Имеем сторону параллелограмма AD=7 и его высоту СН=4, отсюда S(ABCD)=AD*CH=7*4=28
по св-ву параллелограмма, его диагонали делятся точкой пересечения пополам: AO = OC, OB = OD, значит ВО является медианой тр-ка ABC.
По св-ву медианы тр-ка, она разбивает его на два равновеликих (по площади) треугольника, отсюда АВО=СВО
Если боковое ребро составляет 30 градусов с высотой, то катет лежащий напротив 30 градусов равен половине гипотенузы, то есть l/2. Из это следует что высота пирамиды равна h=√(l²-l²/4)=l√3/2.
S=d²/2 d=2*l/2=l S=l²/2
V=(1/3)*(l²/2)*(l√3/2)=l³√3/12