Как мы все знаем, V(объём) паралилепипеда равняется его ширине умноженой на длину и умноженой на высоту. То есть, V= a x b x c. Мы знаем также с условий задачи, что a = 6дм, b = 4дм, V = 192 дм^3. Подставив в формулу, имеем: 192 = 6 х 4 х с => 192 = 24 х с => с = 192/24 => c = 8 дм. Если что и почему не понятно, могу объяснить.
Нам дана окружность, значит известен ее центр. 1. Проведем прямую через центр О окружности и данную точку М на окружности. 2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ. Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.
Нам дана окружность, значит известен ее центр. 1. Проведем прямую через центр О окружности и данную точку М на окружности. 2. Из точки М на прямой ОМ восстановим перпендикуляр к прямой ОМ. Для этого из точки М как из центра проводим дугу радиусом ОМ и в точке пересечения прямой и этой дуги ставим точку N. Из точек О и N радиусом ОN проводим две дуги и точки их пересечения обозначим А и В. Соединим точки пересечения прямой АВ, которая пройдет через точку М, так как ОМ=MN. эта прямая и есть искомая касательная к окружности в точке М, так как <OMA=<OMB=90° по построению, а касательная перпендикулярна радиусу в точке касания.
с = 192/24 => c = 8 дм. Если что и почему не понятно, могу объяснить.