1))). Если луч есть биссектриса угла, то любая точка его равноудалена от сторон этого угла.
2))). Прямую, проходящую через середину отрезка перпендикулярно к нему, называют серединным перпендикуляром к отрезку.
Свойства серединных перпендикуляров треугольника
Каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка.
Точка пересечения серединных перпендикуляров, проведенных к сторонам треугольника, является центром окружности, описанной около этого треугольника.
3))). 1. Точка пересечения биссектрис треугольника- центр вписанной окружности ;
2. Точка пересечения серединных перпендикуляров треугольника- центр описанной окружности ;
3. Точка пересечения медиан треугольника (медианы треугольника пересекаются в отношении 2:1)
4. Точка пересечения высот треугольника - ортоцентр фигуры (центр вписанной и описанной окружности).
Объяснение:
SO=√SA^2-OA^2=√13^2-5^2=√169-25=√144=12
В прям-ом тр-ке SOB наклонную SB найдем по теореме Пифагора
SB=√SO^2+OB^2=√12^2+16^2=√144+256=√400=20
Тр-к АВС подобен тр-ку APQ: у них <A- общий, <APQ=<ABC и <AQP=<ACB как соответственные при двух параллельных и секущей.
PQ найдем из соотношения сторон тр-ков
AP/PQ=AB/BC
Обозначим PQ=y, AP=3x, PB=5x, получим уравнение
3х/у=3х+5х/12
у=12*3х/8х
у=36х/8х
у=9/2=4,5
PQ=4,5