Задачу можно решить так, как дано в первом решении - через площадь. Можно гораздо короче, как в комментариях предложил De266, с теоремы синусов. Теорема синусов гласит: Стороны треугольника пропорциональны синусам противолежащих углов и это отношение равно диаметру описанной вокруг треугольника окружности. Острые углы данного равнобедренного треугольника равны 30° Боковая сторона равна 5, синус 30°=1/2 5:1/2=10=2R 2R=10 R=5 Можно применить теорему о том, что центр описанной окружности - точка пересечения срединных перпендикуляров к сторонам и делать соответствующие вычисления. А можно обойтись без вычислений, только рассуждениями. Этот годится, конечно.только для этого треугольника - равнобедренного с углом 120° при вершине. Мысленно достроить треугольник до ромба. Тогда вершина ромба против вершины данного угла 120° будет центром описанной окружности. От него расстояние до каждой вершины равно стороне и меньшей диагонали этого ромба, и это - радиус описанной окружности. R-5 Если мысленно достроить не получилось - см.рисунок.
Задачу можно решить так, как дано в первом решении - через площадь. Можно гораздо короче, как в комментариях предложил De266, с теоремы синусов. Теорема синусов гласит: Стороны треугольника пропорциональны синусам противолежащих углов и это отношение равно диаметру описанной вокруг треугольника окружности. Острые углы данного равнобедренного треугольника равны 30° Боковая сторона равна 5, синус 30°=1/2 5:1/2=10=2R 2R=10 R=5 Можно применить теорему о том, что центр описанной окружности - точка пересечения срединных перпендикуляров к сторонам и делать соответствующие вычисления. А можно обойтись без вычислений, только рассуждениями. Этот годится, конечно.только для этого треугольника - равнобедренного с углом 120° при вершине. Мысленно достроить треугольник до ромба. Тогда вершина ромба против вершины данного угла 120° будет центром описанной окружности. От него расстояние до каждой вершины равно стороне и меньшей диагонали этого ромба, и это - радиус описанной окружности. R-5 Если мысленно достроить не получилось - см.рисунок.
sin²(α)/cos²(α) - sin²(α) = tg²(α)sin²(α)
делим обе части уравнения на sin²(α)
1/cos²(α) - 1 = tg²(α)
(1 - cos²(α))/cos²(α) = sin²(α)/cos²(α)
умножаем обе части уравнения на cos²(α)
1 - cos²(α) = sin²(α)
1 = sin²(α) + cos²(α)
1 = 1
Верное тождество.