1. правильный шестиугольник, состоит из шести равносторонних треугольников.
найдем сторону шестиугольника ab=r=48/6=8м.
рассмотрим δсdo в нем cd=do=0,5a (где а - сторона квадрата) ⇒ a=2cd
по теореме пифагора найдем сd
r²=cd²+do²=2cd² ⇒ r=cd√2⇒ м
2.центр
вписанной в треугольник окружности - точка пересечения биссектрис его углов.
центр описанной окружности - точка пересечения срединных перпендикуляров.
в правильном треугольнике биссектрисы, медианы и срединные перпендикуляры . центры описанной и вписанной окружности также и
лежат в точке пересечения медиан.
r: r=2: 1, считая от вершины (свойство медиан).
радиус r вписанной в правильный треугольник окружности ( значит, и круга) равен 1/3 его высоты.
радиус rописанной вокруг правильного треугольника окружности равен 2/3 его высоты.
⇒r=2r
πr²=16π⇒r=4
r=2•4=8
πr²=π•8²=64π см²
3.длина окрудности равна l = 2πr => r =l/2π= 36π/2π = 18
а) длина дуги на которую опирается вписанный угол 35⁰ равна
l = а r , где а - центральный, опирающегося
на эту же дугу (в радианах),
т.е а = 2*35⁰ = 70⁰
10= π/180 радиан => а = 70*π/180 = 7π/18
l = а r = 7π/18 *18 =7π
б) площадь сектора,ограниченного этой дугой равна s = 0,5а r²
s = 0,5 *
7π/18 *18² = 0,5 * 7π *18 = 63π
ответ: а)7π; б)63π
Треугольник АLM разносторонний и у него разные углы
<К=75 градусов
<М=35 градусов
Тогда
<L=180-(75+35)=70 градусов
Биссектриса LC поделила угол L на два равных угла
70:2=35 градусов
Рассмотрим треугольник LCM
<LCM=180-35•2=110 градусов-это угол при вершине треугольника
<СLM=<CML=35 градусов
Во-первых,углы при основании треугольника равны между собой
Второе-против одинаковых углов находятся одинаковые по размеру стороны,т е
СL=CM На основании того,что боковые
стороны треугольника LCM равны между собой и равны углы при основании,мы можем утверждать,что треугольник LCM является равнобедренным
Отрезки LM и LC отличаются по размеру
LM лежит против тупого угла 110 градусов и является самой большой сторонойтреугольника,сторона LC- против угла 35 градусов и
LM>LC
Объяснение:
Попробуем геометрически построить катет прямоугольного треугольника, равные синусу 30°
Берём равносторонний треугольник со стороной 1. Все его углы по 60°
Режем его пополам высотой. В равнобедренном треугольнике высота, проведённая к основанию, является также медианой и биссектрисой.
Как биссектриса она делит угол, из которого проведена пополам.
60/2 = 30°
Как медиана она делит сторону, к которой проведена пополам, и длина катета, противолежащего углу в 30°, составляет половину от стороны исходного треугольника, т.е. 1/2
Получаем прямоугольный треугольник с острым углом 30°, и катетом против этого угла, равным половине стороны исходного треугольника
(Смотрм, например, верхнюю половину исходного треугольника)
По определению, синус - в прямоугольном треугольнике это отношение катета, противолежащего углу к гипотенузе.
Гипотенуза 1, катет 1/2
sin(30°) = 1/2 / 1 = 1/2