Длина одного катета прямоугольного треугольника на 4 см больше, чем длина другого катета и на 1 см меньше, чем длина гипотенузы. найти длину гипотенузы
Обозначим О - центр окружности; АВ - касательная; АС -секущая; СD - внутренний отрезок секущей (рисунок в приложении). По условиям задачи: АВ+АС=30 см AB-CD=2 Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: АВ²=АС*DA Выразим: AC=30-AB CD=AB-2 Пусть АВ=х см, тогда АС=30-х СD=x-2 АС=DA-DC=30-x-x+2=32-2x АВ²=АС*DA=(30-x)*(32-2x) x²=(30-x)*(32-2x) x²=960-32х-60х+2х² 2х²-х²-92х+960=0 х²-92х+960=0 D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68) x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12 АВ=12 см АС=30-АВ=30-12=18 см ответ: касательная равна 12 см, секущая - 18 см.
Тогда (x-4) -- длина другого катета
(x+1) -- длина гипотенузы
По теореме пифагора:
x^2 + (x-4)^2 = (x+1)^2
x^2 + x^2 - 8x + 16 = x^2 + 2x + 1
2x^2 - x^2 - 8x - 2x + 16 - 1 = 0
x^2 - 10x + 15 = 0
D = 100 - 4*15 = 40
x1 = (10+2sqrt(10))/2 = 5 + sqrt(10)
Тогда (6+sqrt(10)) -- длина гипотенузы
x2 = (10-2sqrt(10))/2 = 5 - sqrt(10) - не удовл., так как тогда второй катет будет <0
ответ: 6 + sqrt(10)