Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
Из точки О построим перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.
Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.
Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.
Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.
Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.
Введём трёхмерную систему координат с началом в точке В таким образом, что ось Х совпадает с ребром ВА, ось Y -- с ребром ВС, ось Z -- с ребром ВВ₁.
Длину ребра куба положим равной 12 (12 делится нацело и на 3, и на 4), чтобы не только вершины куба, но и точки M и N имели целочисленные координаты.
Определим координаты точек M, N, A и С₁:
M (12; 0; 8), N (0; 9; 0), A (12; 0; 0), С₁ (0; 12; 12).
Определим координаты векторов MN и AС₁:
MN (-12; 9; -8), AС₁ (-12; 12; 12).
cos φ = MN·AС₁ / |MN|·|AС₁| = -12·(-12)+9·12-8·12 / √((-12)²+9²+(-8)²)·√((-12)²+12²+12²) = 12·13 / 17·12√3 = 13/17√3 = 13√3/51