М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dlyaigrmoih1
dlyaigrmoih1
06.10.2020 21:22 •  Геометрия

Дано многокутник зі стороною a і висотою h, проведеною до цієї сторони. Укажіть формулу, за якою обчислюється площа S цього многокутника, якщо він є трикутником.

👇
Открыть все ответы
Ответ:
dsgdfsg00
dsgdfsg00
06.10.2020
Дана пирамида МАВС, Δ АВС- правильный: АВ=ВС=АС.
Пусть АВ=ВС=АС=а,
Площадь равностороннего треугольника S=1/2·a·а·sin 60⁰=a²√3/4
МО- высота пирамиды, O- центр описанной окружности.
В равностороннем треугольнике центр описанной и центр вписанной окружности совпадают, поэтому ВО=R, OK=r
Так как S=p·r, выразим r через а:
r=a²√3/4 : (а+а+а)/2=а²√3/6.
Проведем апофему МК. МК перпендикулярна АС по теореме о треёх перпендикулярах, так как ОК перпендикуляр к АС.
Рассмотрим прямоугольный треугольник МОК, проведем перпендикуляр ОЕ.
Угол МОЕ=β. Треугольники МОЕ и МОК - прямоугольные, угол ОМК -общий. Значит треугольники подобны по двум углам.
Угол ОКМ =β,  tg OKM=MO/OK
 MO=OK·tgβ=a√3·tgβ/6
Тогда объём пирамиды

V=1/3· S·MO=1/3 · a²√3/4 · а√3 ·tg β/6=a³·tgβ /24
Так как V известен, то выразим а через  V  и tg β
a=∛(24·V/ tgβ)
Подставим найденное значение а в выражение площади через сторону а:
S=a²√3/4=∛(24·V/tgβ)² ·√3/4, так как ∛(24)²=4·∛9, то ответ упрощается;

S=√3·∛9V²/tg²β
Объем правильной треугольной пирамиды равен v, а острый угол между высотой и прямой, перпендикулярно
4,4(9 оценок)
Ответ:
Треугольник АВС, точка М внутри треугольника.
Продолжим BM до пересечения со стороной AC в точке N.
Тогда AB+AN > BN=BM+MN  
           MN+NC>MC.
Сложив почленно эти неравенства, получим:
AB+AN+NC+MN > MN+BM+MC, или AB+AC+MN > BM+MC+MN.
Отсюда следует, что AB+AC > BM+MC.     
Исходя из этогои следует, что для точки M , лежащей внутри треугольника ABC, верны неравенства:
MB+MC < AB+AC,
MB+MA < AC+BC,
MA+MC < AB+BC.
Сложив их почленно, получим
2(MA+MB+MC)<2(AB+BC+AC). Отсюда следует, что указанная сумма расстояний меньше периметра треугольника: (MA+MB+MC)<Р.
Применяя неравенство треугольника к треугольникам AMC, BMC и AMB, получим AM+MC>AC,
BM+MC > BC
AM+MB > AB,
Сложив их почленно, получим:
Откуда 2(AM+BM+CM)>(AB+AC+BC).
AM+BM+CM>1/2(AB+AC+BC).
Указанная сумма расстояний больше полупериметра треугольника: 
AM+BM+CM>1/2Р
4,5(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ