Ромб ABCD симметричен относительно диагоналей AC, BD.
PM || BD || KH, PK||AC
(Если точки находятся по разные стороны от диагонали, то, очевидно, отрезок, соединяющий точки, пересекает диагональ и не может быть ей параллелен.)
1) Диагонали ромба перпендикулярны, AC⊥BD. Прямые, параллельные перпендикулярным, перпендикулярны*, PM⊥AC, KH⊥AC, PK⊥BD. Смежные стороны EPKT лежат на перпендикулярных прямых, EPKT - прямоугольник. Диагонали прямоугольника равны.
2) Стороны ромба равны, диагональ делит ромб на равнобедренные треугольники. Прямая, параллельная диагонали, отсекает подобный равнобедренный треугольник, PB=BK, MA=AP, KC=CH. Из равных длин вычитаем равные, AP=KC. Противоположные углы ромба равны, MA=AP=KC=CH => △MAP и △KCH равны по двум сторонам и углу между ними, PM=KH. MPKH - параллелограмм (противоположные стороны равны и параллельны). PM||BD, PK⊥BD => PM⊥PK. Параллелограмм с прямым углом - прямоугольник.
____________________________________________________________
* Соответственные углы при параллельных равны. Если секущая пересекает одну параллельную под прямым углом, то и другую она пересекает под прямым углом.
Объяснение:
1. Если внутренние накрест лежащие углы равны, то прямые параллельны.
∠70°=∠70° ⇒
a║b
2. Если сумма внутренних односторонних углов равна 180, то то прямые параллельны.
∠110+∠70=180°⇒
c║d
3. Если соответственные углы равны, то прямые параллельны.
∠a=∠a
MD║|NK
4. Если соответственные углы равны, то прямые параллельны.
∠90=∠90
m║n
5. Если внутренние накрест лежащие углы равны, то прямые параллельны.
BC║AD
AB║CD
6. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠EFL=∠FLK ⇒ EF║LK
∠EKF=∠KEL⇒ FK║EL
7. Если внутренние накрест лежащие углы равны, то прямые параллельны
∠NPM=∠PMQ ⇒NP║MQ
∠NMP=∠MPQ⇒NM║PQ
8. ΔAOB=ΔCOD (по двум сторонам и углу между ними)⇒
∠BAO=∠ODC если внутренние накрест лежащие углы равны, то прямые параллельны
AB║CD
9. ΔOXY=ΔOYZ по трем сторонам ⇒
∠XYO=∠YOZ ⇒ XY║OZ
∠XOY=∠OYZ⇒ OX║YZ
10.
UR║ST (внутренние накрест лежащие углы равны)
ΔRUO=ΔOST (по стороне и двум прилежащим к ней углам) ⇒
∠TRU=∠STR ⇒ RS║UT
1) Симметриями ромба являются его диагонали. Значит, PM || BD , KH || BD , PK || AC .
Так как PM || BD , KH || BD , то PM || KH , РK || AC
Значит, четырёхугольник EPKT - параллелограмм
По свойству ромба: диагонали ромба взаимно перпендикулярны =>
AC перпендикулярно BD
К тому же PM || BD , KH || BD
Значит, отрезки KH и PM перпендикулярны отрезку AC
PK || AC, KH || PM , KH и PM перпендикулярны отрезку AC
Из всего этого следует, что параллелограмм EPKT является прямоугольником
По свойству прямоугольника:
Диагонали прямоугольника равны, что и требовалось доказать
б)
Так как ромб - это симметричная фигура
следует, что относительно диагоналей AC и ВD происходит симметрия =>
∆ ABC = ∆ АСD
Из первого пункта было сказано, что EPKT является прямоугольником
Значит, прямоугольник EPKT симметрично накладывается на четырёхугольник METH, которые вследствие симметричности является также прямоугольником. А значит, весь четырехугольник МРKH является прямоугольником.
Для точности докажем, что точки Р и М, К и Н симметричны относительно диагонали АС
∆ АРЕ = ∆ АЕМ - по катету и острому углу ( угол ВАС = угол САD - по свойству ромба ; АЕ - общая сторона )
Значит, РЕ = ЕМ
Аналогично доказывается, что КТ = ТН . Поэтому точки Р и К соответственно симметричны точкам М и Н относительно диагонали АС.
ОТВЕТ: прямоугольник