∠NMK=30° ∠KMP=30° так как МК- биссектриса угла М ∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP и секущей МК
Треугольник MNK - равнобедренный NM=NK=KP=8 см
Проводим высоты NF и KE на сторону МР
Из прямоугольного треугольника MNF: ∠ M =60° ∠MNF=30° MF=4 см ( катет против угла в 30° равен половине гипотенузы) По теореме Пифагора NF²=MN²-FM²=8²-4²=64-18=48 NF=4√3 см h ( трапеции)=4√3 см
Проведем МА⊥α и МВ⊥β. МА = 12 - расстояние от М до α, МВ = 16 - расстояние от М до β.
Пусть плоскость АМВ пересекает ребро двугранного угла - прямую а - в точке С. МА⊥α, а⊂α, значит МА⊥а. МВ⊥β, а⊂β, значит МВ⊥а. Так как прямая а перпендикулярна двум пересекающимся прямым плоскости АМВ, то она перпендикулярна этой плоскости, следовательно она перпендикулярна каждой прямой, лежащей в этой плоскости, ⇒ а⊥АС, а⊥ВС, ⇒∠АСВ = 90° - линейный угол двугранного угла; а⊥МС, ⇒ МС - искомое расстояние.
Угол между плоскостями — это угол между перпендикулярами к линии их пересечения, проведенными в этих плоскостях.