1) Если прямая касательная окружности, то она имеет две общие точки с окружностью.
-Нет
2) Если прямая и окружность имеют общую точку, то прямая является касательной окружности.
-Нет
3) Прямая и окружность могут иметь только две общие точки.
-Нет
1) Выбери хорду окружности (возможно несколько вариантов ответов): ON KL MN NR OK
-MN и KL
2) Справедливы-ли данные суждения?
-Да(Ну, нечем объяснить. Уж простите)
3) Которое из утверждений неверно? Радиус окружности, вписанной в равносторонний треугольник, можно вычислить: r=h:3 Центр окружности, описанной около равнобедренного треугольника, находится на большей стороне треугольника Центр окружности, описанной около треугольника, находится на пересечении серединных перпендикуляров.
-2
Объяснение:
-Потому как 1 и 3 верно.
4. Дано: ∢ OAC = 45°. Вычисли: ∢ OBA = °; ∢ AOC = °
-Центр вписанной в угол окружности лежит на биссектрисе угла
углы: OAC = OAB = 45°
радиусы в точку касания перпендикулярны касательной.
углы: ABO = АСО = 90°
сумма острых углов прямоугольного треугольника = 90°
-углы: АОС = АОВ = 90-45 = 45°
(Простите, все что знал.)
Номер 1
ON-биссектриса треугольника МОК
ЕН-высота треугольника DEC
BP-медиана треугольника АВD
Номер 2
Треугольник равнобедренный по условию задачи,т к РК=РМ
<РНК=90 градусов,т к РЕ-перпендикуляр
<КРН=42:2=21 градус,т к РЕ-биссектриса
Номер 3
Треугольники равны по 2 признаку равенства треугольников-по стороне и двум прилежащим к ней углам
АО=ОD;<BAO=<CDO; по условию задачи
<АОВ=<СОD,как вертикальные
Номер 4
В итоге получились два треугольника,которые равны по 3 признаку равенства треугольников-по трём сторонам
LM=NM;LD=ND; по условию задачи
МD-общая сторона
Равенство треугольников MLD и MND доказано,а это значит,что все соответствующие углы равны между собой
<LMD=<DMN,следовательно,МD-биссектриса угла LMN
Номер 5
При пересечении двух диаметров получились два равных равнобедренных треугольника
МО=ОК;НО=ОР;как радиусы
<МОН=<NOK,как вертикальные
Треугольники равны по 1 признаку равенства треугольников-по двум сторонам и углу между ними
<ОМН=<ОРК=40 градусов
Объяснение:
Отверсрогаевлпргвлррваопрымлпеаиоидмрва