Решить : 1) на плоскости даны 3 точки. сколько прямых можно провести через эти точки так, чтобы на каждой прямой лежали хотя бы две точки? 2) сколько точек пересечения могут иметь 3 прямые?
Чертеж не обязателен. а)1 случай. 40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70° ответ:40°;70°;70°. 2 случай. 40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100° ответ:40°;40°;100°. б) 1 случай. 60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60° ответ:60°;60°;60°. 2 случай. 60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60° ответ:60°;60°;60°. в) один случай 100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40° ответ:100°;40°;40°.
Составь уравнение(х-угол при основании,второй х-другой,равный ему угол при основаниих+24-это угол,лежащие против основания).Имеем уравнение:х+х+х+24=180;3х+24=180;х=52.Значит,угол ,лежащий против основания,равен 52+24=76 градусов. Теперь второй вариант. Здесь на 24 градуса больше угол при основании.Так же составляем уравнение(х-угол против основания,х+24-угол при основании и так же другой,равный ему угол при основании.)Имеем уравнение:х+х+24+х+24=180;3х+48=180;х=44,значит,угол против основания равен 44 градуса,а прилежащие к основанию равны по 68 градусов
1 Если три точки лежат на одной прямой, то можно провести через эти точки только одну прямую.
Если три точки не лежат на одной прямой, то можно провести через эти точки три прямые так, чтобы на каждой прямой лежали хотя бы 2 из данных точек.
2.1. Сколько точек пересечения могут иметь три прямые? Рассмотрите все возможные варианты. Изобразите на рисунке.
пусть имеем прямые m n k
если прямые совпадают - бесконечное множество
если две совпадают -одна пересекается - 1 точки
если параллельны и пересекаются - 2 точки
не параллельны и пересекаются - 3точки