Вравнобедренном треугольнике h - длина высоты, опущенной на основание, а h - длина высоты, опущенной на одну из боковых (равных) сторон. найдите все возможные значения отношения h/h.
ну, все возможные значения при ТАКОМ условии найти невозможно, т.к. их будет бесконечное множество, но выяснить границы- это да.
Итак, рассмотрим самый первый случай, что приходит на ум ( а с него и надо начинать) - это треугольник равносторонний. Тогда высоты у него равны и h/H=1
т.е.
1) при углу при вершине =60 отношение равно 1
теперь сразу же выплывает второе решение
2) при углу при вершине <60 отношение будет h/H <1 (решение легкое, кто хочет, может сам доказать)
3) т.к. сказано, что высота h опущена на сторону, а не на продолжение, то треугольник не может быть тупоугольным, значит, максимально он может быть прямоугольным. Т.е. угол при вершине может быть 90. Тогда и h/H = √2
т.е. отношение будет больше 0 до √2 и еще точное значение 1
А) Пирамида правильная, значит в основании лежит квадрат. Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см. б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору: d=√(10²-5²)=√75=5√3см Сторону найдем по Пифагору: а=√(75+75)=√150=5√6см. ответ: высота пирамиды 5см, сторона основания 5√6см.
Доказательство опирается на то, что серединные перпендикуляры к сторонам тоже пересекаются в одной точке. Проведём через каждую вершину ΔABC прямую, параллельную противоположной стороне. Раз стороны ΔABC параллельны сторонам ΔA₂B₂C₂, то AB, BC и AC - средние линии (т.к. параллельны и равны половине данных сторон, это следует из того, что C₂BCA, ABCB₂, ABA₂C - параллелограммы, а как известно, противоположные стороны параллелограммов равны). Тогда прямые AA₂, BB₂ и CC₂ будут отсекать от сторон треугольников равные отрезки. Опять же, т.к. стороны ΔABC параллельны сторонам ΔA₂B₂C₂, то A₁A ⊥ C₂B₂, B₁B ⊥ C₂A₂, C₁C ⊥ A₂B₂, т.к. если две прямые параллельны, то прямая, перпендикулярная одной из них, будет перпендикулярна и второй. Тогда AA₁, BB₁, CC₁ - перпендикуляры к сторонам Δ₂B₂C₂. Но выше доказано, что AA₁, BB₁, CC₁ отсекают от сторон треугольника равные отрезки. Тогда AA₁, BB₁, CC₁ - серединные перпендикуляры к сторонам ΔA₂B₂C₂. Серединные перпендикуляры пересекаются в одной точке. Но т.к. AA₁, BB₁, CC₁ - высоты ΔABC, то и высоты будут пересекаться в одной точке.
ну, все возможные значения при ТАКОМ условии найти невозможно, т.к. их будет бесконечное множество, но выяснить границы- это да.
Итак, рассмотрим самый первый случай, что приходит на ум ( а с него и надо начинать) - это треугольник равносторонний. Тогда высоты у него равны и h/H=1
т.е.
1) при углу при вершине =60 отношение равно 1
теперь сразу же выплывает второе решение
2) при углу при вершине <60 отношение будет h/H <1 (решение легкое, кто хочет, может сам доказать)
3) т.к. сказано, что высота h опущена на сторону, а не на продолжение, то треугольник не может быть тупоугольным, значит, максимально он может быть прямоугольным. Т.е. угол при вершине может быть 90. Тогда и h/H = √2
т.е. отношение будет больше 0 до √2 и еще точное значение 1